Misusing Misuse-Resistance in APE

Dhiman Saha¹, Sukhendu Kuila², Dipanwita Roy Chowdhury¹

¹Dept. Of Computer Science & Engineering, IIT Kharagpur, INDIA ²Dept. Of Mathematics, Vidyasagar University, INDIA

DIAC 2014, Santa Barbara, USA

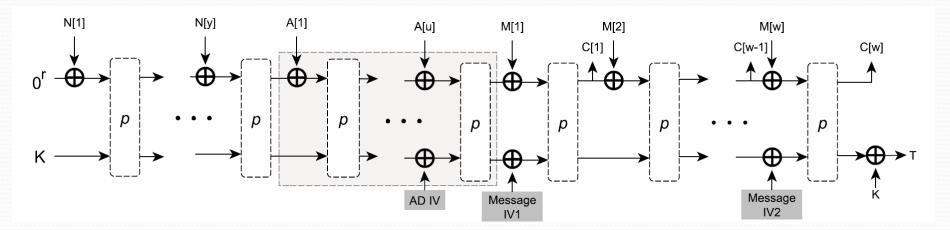
Nonce-based Encryption

- Formalized by Rogaway
- Primary Condition
 - Uniqueness of the nonce in every instantiation of the cipher
- Interesting Consequence
 - Automatic protection from Differential Fault Analysis (DFA)
- DFA assumption
 - Ability to induce faults in the intermediate state of the cipher while replaying the encryption with the same plaintext.
 - No longer holds due to introduction of nonce

Misuse-Resistance

- A desirable property for authenticated ciphers.
- Avoids maintaining a nonce-generator
- Suited for resource constrained environments
- Addressed in CAESAR selection portfolio
- However, there is some collateral damage.
 - Nonce assumption no longer holds
 - Opens up the ciphers for DFA
- This work explores this idea to mount efficient DFA on misuseresistant AE scheme APE

APE


- Authenticated Permutation-based Encryption APE
 - Introduced first in FSE 2014
 - First misuse-resistant permutation-based AE scheme
 - Inspired from SPONGE
 - Targeted for lightweight environments
 - Basically a mode of operation
 - Can be instantiated with permutations of hashes like SPONGENT/QUARK/PHOTON
- Reintroduced in CAESAR
 - Along with HANUMAN & GIBBON
 - Part of PRIMATEs family of authenticated ciphers
 - Now with new indigenous permutation called PRIMATE

The PRIMATE Permutation

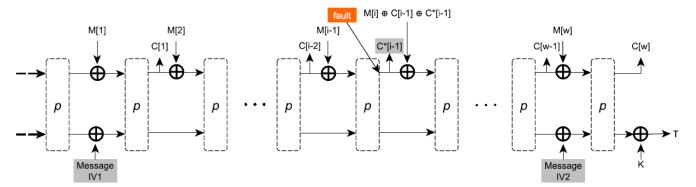
- Internal permutation for APE/HANUMAN/GIBBON
 - Inspired from FIDES authenticated cipher
 - Structurally follows AES round function
- Has two variants
 - PRIMATE-80/120
 - Internal state realized as (5 x 8) / (7 x 8) five-bit elements
- Component Transformations
 - SubBytes
 - ShiftRows
 - MixColumns
 - Round constant addition

PRIMATE-APE

- N[·] Nonce block
- A[·] Associated data block
- M[·] message block
- K Key (160 bit for APE-80)
- The IVs are predefined and vary according to the nature of the length of message and associated data.
- This work uses APE-80 (can be extended to APE-120)

Misusing Misuse-Resistance

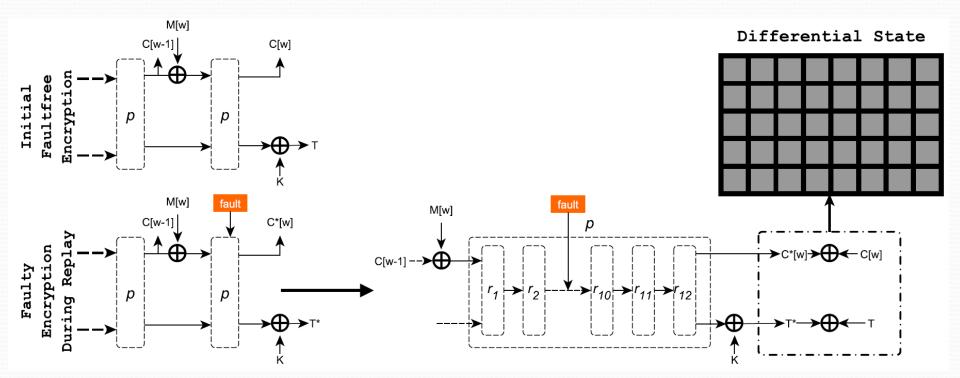
- Concept of faulty collisions :
 - Not a real collision
 - Attacker induces a fault in the state of the cipher so that two different plaintexts produce the same tag.
- Idea : To find faulty collisions
 - Feasible due to misuse-resistance
 - **Observation**: APE is misuse-resistant up to a common prefix.
- Common prefix implication:
 - Plaintexts can be of the following form:
 - $M1 = x_0 || x_1 || x_2 || ... || \mathbf{x_i} || ... || x_w$
 - $M2 = x_0 || x_1 || x_2 || ... || \mathbf{x'_i} || ... || x_w$


A Faulty Collision

• Exploits : Misuse-resistance + Online nature

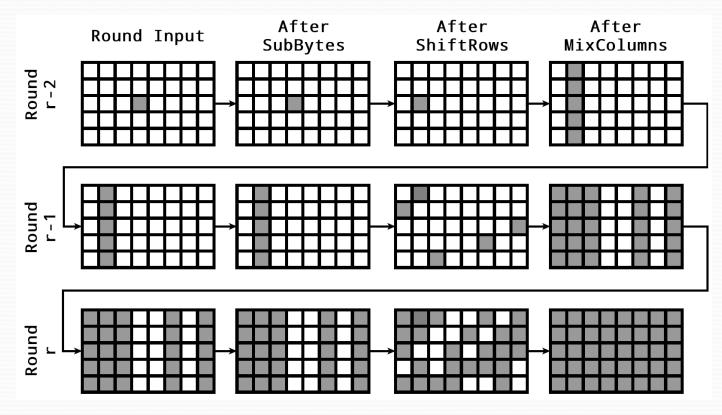
- Induce random word fault in (i-1)th ciphertext output
- Observe faulty (i-1)th output & manipulate ith message input

Plaintext2 = M[1] || M[2] || ... || M[i-1] || (M[i] @ C[i-1] @ C*[i-1]) || M[i+2] || ... || M[w] Ciphertext2 = C[1] || C[2] || ... || C*[i-1] || C[i] || ... || C[w] Tag = T



Implications of a Faulty Collision

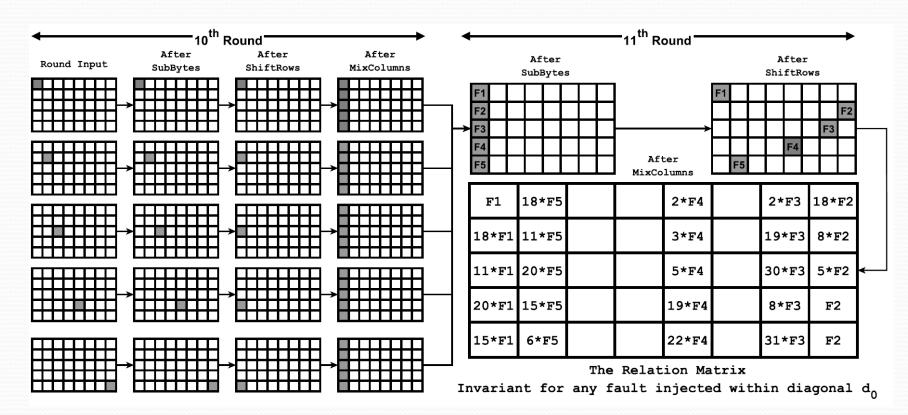
- Ability to replay the encryption
- Recall
 - This is one of the fundamental requirements to mount differential fault analysis attacks
- Next, we explore the prospect of DFA in the presence of faulty collisions
- Fault model assumed is random word fault
 - Recall : word in case of APE is a 5-bit vector


Fault Induction

- Fault induced at the input of 10th round of the final iteration of APE
- Next study the fault diffusion in the differential state in the remaining rounds

Fault Diffusion

- Observe: Exactly 3 specific unaffected columns at the start of rth round due to diagonal word fault at the start of (r-2)th round.
 - Helps to identify fault source diagonal by observing differential state
 - Exploits the non-square nature of state matrix



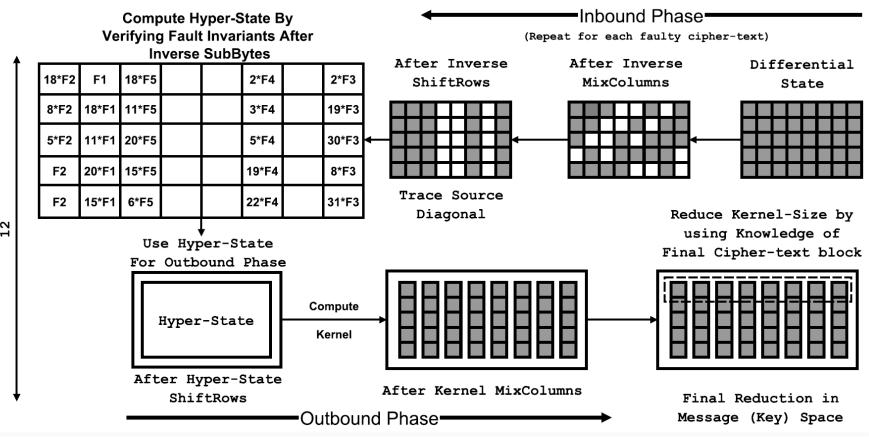
Diagonal Fault Analysis

- Advanced differential fault attack
 - Introduced in 2009, specially suited for AES-like constructions
 - Has been highlighted in the book Fault Analysis in Cryptography as one of the most efficient DFA on AES
 - Available on Eprint archive https://eprint.iacr.org/2009/581
 - Exploits equivalence of fault induced in the same diagonal of the state matrix
- Can be applied on APE
 - But not directly
 - Last round MixColumn inclusion major deviation from AES
 - Makes classical diagonal attack inefficient
 - Need some adaptation
 - Focus on recovering the state instead of the key

The Fault Invariant

- The diagonal principle :
 - Equivalence of faults limited to a diagonal
- The relation matrix is governed by MixColumns

EscApe:


Diagonal Fault Analysis of APE

- Inbound phase
 - Invert the differential state (computed from correct and faulty output) to reach up to state after last round SubBytes.
 - Use unaffected columns to identify source fault diagonal and load appropriate relation matrix
 - Solve equations involving fault invariant to generate hyper-state
 - Hyper-State is a special structure where every element is a set of candidates computed after equation solving
 - Helps capture the notion of candidate states for the correct state

EscApe (contd.)

- The Outbound phase
 - Apply ShiftRows to Hyper-state
 - Compute Kernel (Refer paper for details)
 - Apply MixColumns to Kernel
- Reduce message space by verifying candidates against last ciphertext block
 - Exploits the availability of last ciphertext block
 - Simulations confirm large-scale reduction due to this
- Reduced message space directly corresponds to reduced key space.

EscApe : The Final Picture

Round 12

Results

• In the presence of faulty collision:

Fault Count	Fault Type	Avg. Final Key Space
1	Random word	2 ⁸⁰
2	fault at the start of 10 th	2 ²⁵
3	round in the	2 ⁵
4	last iteration of APE	1

Epilogue

- Shown how the desirable property of misuse-resistance becomes the gateway for DFA
- First fault analysis of SPONGE when used in the context of authenticated encryption
- EscApe : efficient diagonal attack on APE
 - 2 faults lead to a practical attack, 4 give the unique key
- Removal of final truncation of FIDES in APE makes EscApe highly efficient
- Finally, its evident that
 - Misuse-resistance,
 - Design of underlying permutation and
 - Choice of mode of operation can all contribute to the susceptibility of authenticated ciphers to fault attacks

Thank You

Please forward any queries to

crypto@dhimans.in

 Full version of the paper : http://de.ci.phe.red or, CAESAR mailing list

