CAESAR candidate ICEPOLE

Pawel Morawiecki^{1,2}, Kris Gaj³, Ekawat Homsirikamol³, Krystian Matusiewicz⁴, Josef Pieprzyk^{5,6}, **Marcin Rogawski**⁷, Marian Srebrny^{1,2}, and Marcin Wojcik⁸

Polish Academy of Sciences, Poland¹; University of Commerce, Poland²; George Mason University, USA³; Intel, Gdansk, Poland⁴; Queensland University of Technology, Australia⁵; Macquarie University, Australia⁶; Cadence Design Systems, USA⁷; University of Bristol, United Kingdom⁸

DIAC 2014: Directions in Authenticated Ciphers

Marcin Rogawski

CAESAR candidate ICEPOLE

<ロト <回ト < 注ト < 注ト

Э

2 Icepole Design

3 Security Analysis

4 HW and SW Performance

<ロト <回ト < 三ト < 三ト

Introduction and Motivation

- Multiple Internet protocols require authenticated encryption: IPSec/TLS/SSL etc.
- High-speed hardware-oriented cipher with authentication, more efficient that AES-GCM
- Existing frameworks/strategies for provably secure cryptographic schemes (e.g.: Sponge Construction etc.)
- CAESAR competition

< <p>O > < <p>O >

- E - - E -

ICEPOLE 101 Basic Ingredients of ICEPOLE High Level View

- based on duplex framework introduced by Bertoni et al. "Duplexing the sponge: (...)" Cryptology ePrint archive 2011/499
- high-speed hardware-oriented ICEPOLE permutation is the heart of our design
- family of authenticated encryption schemes with three parameters: key, nonce and SMN
- primary recommendation: ICEPOLE-128: 128-bit key and 128-bit nonce

<ロト <回ト < 臣ト < 臣ト

ICEPOLE 101 Basic Ingredients of ICEPOLE High Level View

Encryption and Tag Generation - Overview

イロト イヨト イヨト イヨト

ICEPOLE 101 Basic Ingredients of ICEPOLE High Level View

ICEPOLE Internal State Organization

- 1280-bit internal state S
- organized into dwo-dimensional array S[4][5]
- each element of array is a 64-bit word
- S[x][y][z] refers to the bit z in the row x and the column y
- the mapping between a vector V and the S: V[64(x+4y)+z] = S[x][y][z]

イロト イポト イヨト イヨト

ICEPOLE 101 Basic Ingredients of ICEPOLE High Level View

ICEPOLE Round and P6, P12 Permutations

$R=\kappa\circ\psi\circ\pi\circ\rho\circ\mu$

ICEPOLE Permutations

- P6 6 rounds of ICEPOLE permutation
- P12 12 rounds of ICEPOLE permutation

<ロト <回ト < 臣ト < 臣ト

Transformation: μ

ICEPOLE 101 Basic Ingredients of ICEPOLE High Level View

$$\begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 1 & 18 & 2 \\ 1 & 2 & 1 & 18 \\ 1 & 18 & 2 & 1 \end{pmatrix} \begin{pmatrix} Z_0 \\ Z_1 \\ Z_2 \\ Z_3 \end{pmatrix} = \begin{pmatrix} 2Z_0 + Z_1 + Z_2 + Z_3 \\ Z_0 + Z_1 + 18Z_2 + 2Z_3 \\ Z_0 + 2Z_1 + Z_2 + 18Z_3 \\ Z_0 + 18Z_1 + 2Z_2 + Z_3 \end{pmatrix}$$

• GF(2⁵) multiplication modulo $x^5 + x^2 + 1$

DIAC, August 23-24, 2014

CAESAR candidate ICEPOLE

ICEPOLE 101 Basic Ingredients of ICEPOLE High Level View

$R = \kappa \circ \psi \circ \pi \circ \rho \circ \mu$

DIAC, August 23-24, 2014

CAESAR candidate ICEPOLE

イロト イヨト イヨト イヨト

10 / 29

E

ICEPOLE 101 Basic Ingredients of ICEPOLE High Level View

Transformation: ρ

for all
$$(0 \le x \le 3), (0 \le y \le 4)$$

 $S[x][y] := S[x][y] \ll \text{offsets}[x][y]$

offsets[0][2] := 3	offsets[0][3] := 41
offsets[1][1] := 44	offsets $[1][2] := 10$
offsets[2][0] := 62	offsets[2][1] := 6
offsets[2][4] := 61	offsets[3][0] := 28
offsets[3][3] := 21	offsets[3][4] := 56

offsets[0][0] := 0	offsets[0][1] := 36
offsets[0][4] := 18	offsets[1][0] := 1
offsets[1][3] := 45	offsets[1][4] := 2
offsets[2][2] := 43	offsets[2][3] := 15
offsets[3][1] := 55	offsets[3][2] := 25

- E - D

ICEPOLE 101 Basic Ingredients of ICEPOLE High Level View

$R = \kappa \circ \psi \circ \pi \circ \rho \circ \mu$

DIAC, August 23-24, 2014

CAESAR candidate ICEPOLE

イロト イヨト イヨト イヨト

E

ICEPOLE 101 Basic Ingredients of ICEPOLE High Level View

Transformation: π

$$\begin{array}{l} x' := (x+y) \ mod \ 4 \\ y' := (((x+y) \ mod \ 4) + y + 1) \ mod \ 5 \end{array}$$

DIAC, August 23-24, 2014

ICEPOLE 101 Basic Ingredients of ICEPOLE High Level View

$R = \kappa \circ \psi \circ \pi \circ \rho \circ \mu$

DIAC, August 23-24, 2014

Marcin Rogawski CA

CAESAR candidate ICEPOLE

イロト イヨト イヨト イヨト

E

Transformation ψ

ICEPOLE 101 Basic Ingredients of ICEPOLE High Level View

for all $(0 \le k \le 4)$ $Z_k = M_k \oplus (\neg M_{k+1}M_{k+2}) \oplus (M_0M_1M_2M_3M_4) \oplus (\neg M_0 \neg M_1 \neg M_2 \neg M_3 \neg M_4)$

ICEPOLE 101 Basic Ingredients of ICEPOLE High Level View

$R = \kappa \circ \psi \circ \pi \circ \rho \circ \mu$

DIAC, August 23-24, 2014

CAESAR candidate ICEPOLE

イロト イヨト イヨト イヨト

E

Transformation: κ

ICEPOLE 101 Basic Ingredients of ICEPOLE High Level View

 $S[0][0] := S[0][0] \oplus \text{constant}[\text{numberOfRound}]$

ICEPOLE Constants

- The constant values are taken as the output of a simple 64-bit maximum-cycle Linear Feedback Shift Register (LFSR).
- The polynomial representation of LFSR is $x^{64} + x^{63} + x^{61} + x^{60} + 1$.
- The LFSR seed 0123456789ABCDEF
- each cycle generates a subsequent constant.

<ロト <回ト < 三ト < 三ト

ICEPOLE 101 Basic Ingredients of ICEPOLE High Level View

Decryption and Tag Generation

イロト イヨト イヨト イヨト

Э

ICEPOLE Security

ICEPOLE Security (Parameters)

- ICEPOLE is based on the duplex construction parameters: r (bitrate) and c (capacity)
- ICEPOLE-128: r=1026 bits and c=256 bits (up to 2¹²⁶ blocks)
- ICEPOLE-256: r=962 bits and c=318 bits (up to 2⁶² blocks)
- Security level proven, unless permuation is unsecure

SKEW'11: Bertoni et al. in "On the security of the keyed sponge construction" proved that if the data complexity is limited to 2^a *r*-bit blocks, the keyed mode withstands generic attacks with time complexity up to 2^{c-a} calls of the underlying permutation. If a < c/2, this results in an increase of the security strength from c/2 to c - a.

イロト イポト イヨト イヨト

Nonce Requirement

- ICEPOLE requires a nonce
- In case of nonce reuse, some level of intermediate robustness provided by secret message number and associated data (if distinct)
- In case of violating all nonce-like mechanisms (nonce reused, secret message number reused, the same associated data), security claims do not hold (recent analysis by Tao Huang, Hongjun Wu, Ivan Tjuawinata)

DIAC, August 23-24, 2014

イロト イロト イヨト

ICEPOLE Security

ICEPOLE Security

ICEPOLE Security Analysis

- Differential cryptanalysis (with aid of a SAT solver, we provide a bound on differential trail probability for 12 rounds, probability $\leq 2^{-84}$)
- Linear cryptanalysis (good linear profile of s-box, propagation of linear masks very similar to differential analysis, expecting similar security margin. Rigorous analysis to be done)
- **Rotational cryptanalysis** (good selection of round constants and pseudo-random initial state prevent this kind of attack)
- **SAT-based cryptanalysis** (experimentally verified, the attack reaches only 3 rounds)
- Techniques exploiting low algebraic degree (algebraic degree of a single round is 4, then for 4 rounds a degree is 256, making the attacks infeasible)

Hardware Architecture Software Implementation

Basic Iterative Architecture

Hardware Architecture Software Implementation

FPGA Implementation Results

Xilinx Virtex-6

- Throughput: 41364 Mbps
- Area: 1501 Slices
- Throughput/Area: 27.56 Mbps/Slice

Altera Stratix-IV

- Throughput: 38779 Mbps
- Area: 4564 ALUTs
- Throughput/Area: 8.50 Mbps/ALUT

Hardware Architecture Software Implementation

FPGA Implementation - Area

Source:

 Keyak and Keccak (multi-purpose mode) from anonymous submission to anonymous conference :)
Thanks for sharing!

DIAC, August 23-24, 2014

Hardware Architecture Software Implementation

FPGA Implementation - Throughput

< □ > < □ > < □

3.0

Hardware Architecture Software Implementation

FPGA Implementation - Throughput/Area

Hardware Architecture Software Implementation

Software Implementation

- straightforward C implementation compiled for speed
- no beyond-C optimization
- 9 cycles per byte on Intel Ivy Bridge (i5-3320M)
- 8 cycles per byte on Haswell (Intel Xeon E3 1275)

イロト イポト イヨト イヨト

Conclusions Questions

- \bullet duplex construction + very efficient permutation = ICEPOLE
- highly efficient in modern FPGAs
- very-high speed in modern FPGAs
- good software performance

イロト イポト イヨト イヨト

Conclusions Questions

Thank you!

Questions?

DIAC, August 23-24, 2014

Marcin Rogawski

CAESAR candidate ICEPOLE

Questions?

(ロ) (日) (日) (日)

I I I