AEZ v2 Authenticated Encryption by Enciphering

- 1. Why we created AEZ
- 2. Enciphering-based AE
- 3. Robust-AE
- 4. Accelerated provable-security
- 5. Components FF0 and EME4
- 6. AEZ Extensions

Viet Tung Hoang

Georgetown University, USA University of Maryland, USA

Ted Krovetz

Sacramento State, USA

Phillip Rogaway

UC Davis, USA ETH Zürich, Switzerland

www.cs.ucdavis.edu/~rogaway/aez

DIAC 2014 UC Santa Barbara Aug 23, 2014

AE Thesis

Giving **definitions** that guarantee more. Giving **schemes** that achieve them.

By **strengthening** symmetric encryption, we can provide a **simpler-to-use** primitive for users, and thereby **minimize misuse**.

(Also: by focusing on the new target, we can **maximize efficiency**.)

Symmetric Encryption

Robust AE

Misuse-Resistant AE (MRAE)

Online AE

Nonce-based AEAD

Nonce-based AE

Probabilistic AE

IND-CCA2 prob encryption

IND-CPA prob encryption

Isn't MRAE already very strong?

Robust AE MRAE Online AE (OAE) Nonce-based AEAD

Yes.

Still, there are **important ways** in which MRAE **falls short** of maximizing strength/ease of correct use, in both

- the service it provides (**syntax**)
- what it guarantees (**security**)

MRAE

 \mathcal{A} may not ask queries that would trivially result in a win

- Repeat an (N, A, M) enc query
- Ask a dec query (*N*, *A*, *C*) after *C* is returned by an (*N*, *A*, \cdot) enc query

MRAE

Effectively **assumes** |C| = |M| + 128

> Some reasonably large constant τ . Big enough that, with the "real" scheme, forgeries almost *never* occur.

There <u>are</u> settings where we don't want to grow plaintexts ~16 bytes

Constrained devices: sensor networks, ad hoc networks, "internet of things": *short tags save energy*.

Shaving off 8 octets may justify making symmetric-key crypto 10× more expensive [sl.12]

Crypto cost should not ignore cost of data expansion. Authentication tags may be "evil" (authenticity is not) [sl.29]

Struik also speaks of the importance of supporting **very short plaintexts** and enabling exploitation of **already-present redundancy**.

At some level, we <u>know</u> how to fix this: *Encrypt by Enciphering*

Encode-Then-Encipher Encryption: How to Exploit Nonces or Redundancy in Plaintexts for Efficient Cryptography

Mihir Bellare¹ and Phillip Rogaway²

 ¹ Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA mihir@cs.ucsd.edu, www-cse.ucsd.edu/users/mihir
 ² Dept. of Computer Science, Engineering II Building, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA, and
 Dept. of Computer Science, Faculty of Science, Chiang Mai University, Thailand rogaway@cs.ucdavis.edu, www.cs.ucdavis.edu/~rogaway

Abstract. We investigate the following approach to symmetric encryption: first encode the message via some keyless transform, and then encipher the encoded message, meaning apply a permutation F_K based on a shared key K. We provide conditions on the encoding functions and the cipher which ensure that the resulting encryption scheme meets strong privacy (eg. semantic security) and/or authenticity goals. The encoding can either be implemented in a simple way (eg. prepend a counter and append a checksum) or viewed as modeling existing redundancy or entropy already present in the messages, whereby encode-then-encipher encryption provides a way to exploit structured message spaces to achieve compact ciphertexts.

[Bellare, Rogaway 2000] [Shrimpton, Terashima 2013]

Enciphering-Based AE

$|K|, |N|, |A|, |M|, \tau$ **arbitrary**

Robust AE: User chooses *K*, *N*, *A*, *M*, and $\tau \ge 0$.

Scheme is expected to deliver **best-security-possible** for τ .

Pseudorandom injection [R, Shrimpton 2006]

but now understood **prescriptively**, for all τ — not just an alternative characterization of an MRAE scheme Inclusion of the simulator lets one formalize that release of **unverified plaintext** is not damaging (cf: [ABLMMY14])

Robust AE Generalizes strong-PRP and MRAE definitions

What to use for the enciphering scheme?

Length-Dependent Dispatch

FF0 FFX-like (Feistel) [NIST SP 800-38G] AES4-Based

EME4

Builds on EME [Halevi, Rogaway] and OTR [Minematsu 2014] AES4 & AES based.

Designing FF0 and EME4 Accelerated Provable-Security Paradigm

In general	In our case	
Assume some primitive	[Liskov, Rivest, Wagner 2002] A tweakable blockcipher (TBC) (tweak space $\{0,1,2,3\} \times \mathbb{N}$)	
Design assuming the primitive meets some standard assumption	The TBC is good as a tweakable PRP	
Instantiate with "standard" primitive: the scaled-up design	Realize the TBC with AES / XE. Not what we submitted	
Selectively instantiate with a mix of standard and reduced-round primitives: the scaled-down design	Use AES + AES4	

EME4

Message with an even number of blocks, no fragment at the end

EME4

Message with an odd number of blocks, the last possibly a fragment

AHash

FF0

 Δ is a universal-hash of A

0, 5 is our TBC

is truncation or *X*0* padding (depending on orientation)

← 16-31 bytes

1-15 bytes: more rounds (up to 24) and correct the "even permutation" issue

Security property

The user chooses the ciphertext-expansion $\tau \ge 0$ and the scheme delivers *best-possible-security* for τ .

- Robust AE (Robust AE > MRAE > Online-AE)
- Automatic novelty & redundancy exploitation
- Unverified-plaintext-release OK

Basic approach

- Enciphering-based AE
- FF0 and EME4
- Accelerated provable security (AES+AES4; AES key schedule)

Additional features

- Blockcipher calls: 1× AES enc; 0.4× AES for AD and fast-reject
- Inverse-free
- Parameter-free (well, ABYTES)
- Highly symmetric: encipher ≈ decipher
- Good key-agility
- Arbitrary-length keys (extract 256 bits; then expand) & nonces
- Small context size (≈ 144 bytes for speed-optimized)
- AEZ Extensions (coming soon)

AEZ Efficiency

in "AES equivalents" (10 AES rounds)

Message of $m \ge 2$ blocks	computation \leq	latency ≤
Encipher/Decipher	m + 2.4	3.6
Encrypt/Decrypt	m + 3.8	3.6
Reject invalid ciphertext	0.4 m + 3	3.2
Process AD	0.4 <i>m</i>	0.4
Setup 128-bit key	2.4	0.8

Experimental implementation: **0.75 cpb** (4Kb, Haswell) **0.69 cpb** (marginal cost, Haswell) (cf. the CTR, OCB: **0.64 cpb**)

AEZ Extensions

A wrapper to realize additional functionality

AEZ-Encrypt is <u>Already</u> an Extension of its underlying enciphering scheme

Functionality Deliverable via AEZ Extensions

- 1. Secret Message Numbers
- 2. Plaintext length-obfuscation
- 3. Salting passwords
- 4. Slow PW-processing
- 5. Convenient ciphertext alphabet
- 6. Vector-valued plaintexts and AD

By encoding the SMN into the plaintext By padding (eg, to 2^n blocks) By encoding the salt in with the key By iterating a permutation By, eg, base64url [RFC 4648] encoding By argument-encoding

Arbitrary-length keys could have been delivered by an AEZ Extension, but were put into AEZ itself.

AEZ Conclusions

- Getting the **strongest** security & versatility guarantee is **not** expensive
 - **Cost**(Robust AE) \approx **Cost** (AES-CTR)
- Properly done, deterministic encryption can be **good**:
 - Eliminates need for coins and state
 - Shortens ciphertexts
 - Main security concern equality leakage is often irrelevant
 - Frustrates one line of mass-surveillance [Bellare, Paterson, Rogaway 14]

[Bellare, Boldyreva, Knudsen, Namprempre 2001] [Boldyreva, Taesombut 2004], [Rogaway, Zhang 2011] [Fleischmann, Forler, Lucks, Wenzel 2012]

Online AE

- Requires a parameter OAE[*n*] to be meaningful.
- With fixed *n*: makes an implementation characteristic a security goal.
- Does not approximate best-possible security for an online scheme.
- Far weaker than MRAE no exploitation of novelty or redundancy
- Notion will not be understandable by users. Attacks likely.
- Name: *Online-MR _______ max-online MR*

Paper on this in the coming months.

$100 \\ 101 \\ 102$	algorithm Encrypt(K, N, A, M) $X \leftarrow M \parallel [0]^{\text{ABYTES}}$ $T \leftarrow \text{Format}(N, A)$	// AEZ authenticated encryption	
103	if $M = \varepsilon$ then return $AMac(K, T)[1ABYTES]$		
104	$C \leftarrow \operatorname{Encipher}(K, T, X)$		
105	return C		
110	algorithm $Decrypt(K, N, A, C)$	// AEZ authenticated decryption	
111	$T \leftarrow \operatorname{Format}(N, A)$		
112	if $ C \leq \text{ABYTES then if } (C = \text{AMac}(K, T)[1\text{ABYTES}])$ then return ε else return \perp		
113	$X \leftarrow \text{Decipher}(K, T, C)$		
114	$M \parallel Z \leftarrow X$ where $\parallel Z \parallel$ = ABYTES		
115	if $(Z = [0]^{ABYTES})$ then return M else return \bot		
120	algorithm Format (N, A)	// Encode inputs and parameters	
121	if $ N \le 11$ then return $00 $ (ABYTES) ₆ $ $ EXTNS $ N 10^* A $		
122	if $ N = 12$ then return $01 $ (ABYTES) ₆ $ $ EXTNS $ N A$		
123	if $ N \ge 13$ then return 10 (ABYTES) ₆ EXTNS N[112] A 1	$10^* \parallel N[13\ N\] \parallel [\ N\]_8$	
200	algorithm Encipher (K, T, X)	// AEZ enciphering	
201	if $ X < 32$ then return EncipherFF0(K, T, X)		
202	if $ X \ge 32$ then return EncipherEME4 (K, T, X)		

210 algorithm EncipherFF0(K, T, M) // FF0 enciphering
211
$$m \leftarrow |M|; n \leftarrow m/2; \Delta \leftarrow AHash(K, T)$$

212 if $m = 8$ then $k \leftarrow 24$ else if $m = 16$ then $k \leftarrow 16$ else if $m < 128$ then $k \leftarrow 10$ else $k \leftarrow 8$
213 $L \leftarrow M(1..n); R \leftarrow M(n+1..m);$ if $m \ge 128$ then $j \leftarrow 5$ else $j \leftarrow 6$
214 for $i \leftarrow 0$ to $k-1$ do $R' \leftarrow L \oplus ((\mathbb{E}_{K}^{0,j}(\Delta \oplus R10^* \oplus [i]_{16}))(1..n)); L \leftarrow R; R \leftarrow R'$ od; $C \leftarrow R \parallel L$
215 if $m < 128$ then $C \leftarrow C \oplus (\mathbb{E}_{K}^{0,7}(\Delta \oplus (C \lor 10^*)) \land 10^*)$
216 return C
220 algorithm EncipherEME4(K, T, M) // EME4 enciphering
211 $\Delta \leftarrow AHash(K,T); (M_0, M'_0, \dots, M_m, M'_m, M_*, M_{**}) \leftarrow M; d \leftarrow |M| \mod 256$
222 for $i \leftarrow 1$ to m do $X'_i \leftarrow M_i \oplus \mathbb{E}_{K}^{1,i}(M'_i); X_i \leftarrow M'_i \oplus \mathbb{E}_{K}^{0,0}(X'_i)$ od
223 if $d = 0$ then $X \leftarrow X_1 \oplus \cdots \oplus X_m \oplus 0$ else if $d \le 127$ then $X \leftarrow X_1 \oplus \cdots \oplus X_m \oplus \mathbb{E}_{K}^{0,3}(M_*10^*)$
224 else $X \leftarrow X_1 \oplus \cdots \oplus X_m \oplus \mathbb{E}_{K}^{0,3}(M_*) \oplus \mathbb{E}_{K}^{0,4}(M_{**}10^*)$ fl
225 $R \leftarrow M_0 \oplus \mathbb{E}_{K}^{0,1}(M'_0 \oplus X) \oplus \Delta; R' \leftarrow M'_0 \oplus \mathbb{E}_{K}^{-1,1}(R) \oplus X; S \leftarrow R \oplus R'$
226 for $i \leftarrow 1$ to m do $Z \leftarrow \mathbb{E}_{K}^{2,i}(S); Y_i \leftarrow X'_i \oplus Z; Y'_i \leftarrow X_i \oplus Z; C'_i \leftarrow Y_i \oplus \mathbb{E}_{K}^{0,3}(C_*10^*)$
228 else if $d \le 127$ then $C_* \leftarrow M_* \oplus \mathbb{E}_{K}^{-1,3}(S); C_{**} \leftarrow \varepsilon; Y \leftarrow Y_1 \oplus \cdots \oplus Y_m \oplus \mathbb{E}_{K}^{0,3}(C_*) \oplus \mathbb{E}_{K}^{0,4}(C_{**1}10^*)$ fl
229 else $C_* \leftarrow M_* \oplus \mathbb{E}_{K}^{-1,3}(S); C_{**} \leftarrow \mathbb{E}_{K} + Y_1 \oplus \cdots \oplus Y_m \oplus \mathbb{E}_{K}^{0,3}(C_*10^*)$
239 else $C_* \leftarrow M_* \oplus \mathbb{E}_{K}^{-1,3}(S); C_{**} \leftarrow \mathbb{E}_{K} + Y_1 \oplus \cdots \oplus Y_m \oplus \mathbb{E}_{K}^{0,3}(C_*) \oplus \mathbb{E}_{K}^{0,4}(C_{**1}10^*)$ fi
230 $C_0'' \leftarrow R \oplus \mathbb{E}_{K}^{-1,2}(R'); C_0 \leftarrow R' \oplus \mathbb{E}_{K}^{-1,3}(S); Y \leftarrow Y_1 \oplus \cdots \oplus Y_m \oplus \mathbb{E}_{K}^{0,3}(C_*) \oplus \mathbb{E}_{K}^{0,4}(C_{**1}10^*)$ fi
230 $C_0'' \leftarrow R \oplus \mathbb{E}_{K}^{-1,2}(R'); C_0 \leftarrow R' \oplus \mathbb{E}_{K}^{-1,2}(C_0') \oplus \Delta; C_0' \leftarrow \mathbb{E}_{K}^{0,4}(C_*) \oplus \mathbb{E}_{K}^{0,4}(C_{**1}10^*)$ fi
230 $C_0'' \leftarrow R \oplus \mathbb{E}_{K}^{-1,2}(R'); C_0 \leftarrow R' \oplus \mathbb{E}_{K}^{0,2}(C_0'') \oplus \Delta; C_0' \leftarrow \mathbb{E}_{K}^{0,4}(C_*) \oplus \mathbb{E}_{K}^{0,4}(C_{**1}10^*)$ fi
231 return $C_0C_0' \cdots C_mC_m' C_*C_{**}$

300	algorithm $AHash(K, A)$	// AXU hash	
301	$(A_0,\ldots,A_m) \leftarrow A$		
302	if $ A_m \mod 128 = 0$ then return $\mathbb{E}^{3,0}_K(A_0) \oplus \mathbb{E}^{3,1}_K(A_1) \oplus \cdots \oplus \mathbb{E}^{3,m}_K(A_m)$		
303	if $ A_m \mod 128 \neq 0$ then return $\operatorname{E}_K^{3,0}(A_0) \oplus \operatorname{E}_K^{3,1}(A_1) \oplus \cdots \oplus \operatorname{E}_K^{3,m-1}(A_{m-1}) \oplus \operatorname{E}_K^{1,0}(A_m 10^*)$		
310	algorithm $AMac(K, A)$	// PRF	
311	$\mathbf{return} \ \mathrm{E}_{K}^{-1,5}(\mathrm{AHash}_{K}(A))$		
400	algorithm $E_K^{i,j}(X)$ // TBC or	n $\mathcal{T} = \{0\} \times [07] \cup \{1, 2, 3\} \times \mathbb{N}$	
401	$(J, L, K_0, K_1, K_2, K_3) \leftarrow \text{Expand}(\text{Extract}(K))$		
402	$k_0 \leftarrow (K_0, K_1, K_2, K_3, 0); k_2 \leftarrow (K_2, K_3, K_0, K_1, 0)$		
403	$k_1 \leftarrow (K_1, K_2, K_3, K_0, 0); k_3 \leftarrow (K_3, K_0, K_1, K_2, 0)$		
404	$K \leftarrow (L, J, 2J, 4J, K_0, K_1, K_2, K_3, K_0, K_1, K_2)$		
405	if $i = -1$ then return $AES_{K}(X \oplus jJ)$		
406	if $i = 0$ or $j = 0$ then return $AES4_{k_i}(X \oplus jJ)$		
407	return $AES4_{k_i}(X \oplus (j \mod 8)J \oplus 2^{\lfloor (j-1)/8 \rfloor}L)$		
410	algorithm $Extract(K)$	// Convert key to 256 bits	
411	$z \leftarrow [0][1][2] \cdots [15];$ for $i \leftarrow 1$ to 7 do $C_i \leftarrow AES4_{(z,z,z,z,z)}([i]^{16})$		
412	$a \leftarrow (0, C_1, C_2, C_3, 0); b \leftarrow (0, C_4, C_5, C_6, 0); C \leftarrow C_7$		
413	$(I_0,\ldots,I_m) \leftarrow K; \text{if } I_m = 16$		
414	then $J \leftarrow AES4_{a}(I_{0} \oplus C) \oplus AES4_{a}(I_{1} \oplus 2C) \oplus AES4_{a}(I_{2} \oplus 2^{2}C) \oplus \cdots \oplus A$	$\operatorname{AES4}_{\boldsymbol{a}}(I_m \oplus 2^m C)$	
415	$L \leftarrow \operatorname{AES4}_{\boldsymbol{b}}(I_0 \oplus C) \oplus \operatorname{AES4}_{\boldsymbol{b}}(I_1 \oplus 2C) \oplus \operatorname{AES4}_{\boldsymbol{b}}(I_2 \oplus 2^2 C) \oplus \cdots \oplus \operatorname{A}$	$\mathrm{ES4}_{\boldsymbol{b}}(I_m \oplus 2^m C)$	
416	else $J \leftarrow AES4_{a}(I_{0} \oplus C) \oplus AES4_{a}(I_{1} \oplus 2C) \oplus AES4_{a}(I_{2} \oplus 2^{2}C) \oplus \cdots \oplus A$	$AES4_{\boldsymbol{a}}(I_m 10^* \oplus 3C)$	
417	$L \leftarrow \operatorname{AES4}_{\boldsymbol{b}}(I_0 \oplus C) \oplus \operatorname{AES4}_{\boldsymbol{b}}(I_1 \oplus 2C) \oplus \operatorname{AES4}_{\boldsymbol{b}}(I_2 \oplus 2^2 C) \oplus \cdots \oplus \operatorname{A}$	$\mathrm{ES4}_{\boldsymbol{b}}(I_m 10^* \oplus 3C)$	
418	$\mathbf{return} \ J \parallel L$		
420	algorithm Expand(K) // Map 256-bit string	g to vector of 128-bit subkeys	
421	$(J,L) \leftarrow K; k \leftarrow (J,L,2J,L,4J)$	-	
422	for $i \leftarrow 0$ to 3 do $K_i \leftarrow AES4_k([i]^{16})$		
423	return $(J, L, K_0, K_1, K_2, K_3)$	26	