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Nonce-based Authenticated Encryption with Associated Data

Enc
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N: Nonce  (public message number)
M: Plaintext that needs to be encrypted and authenticated
AD: Associated data that needs to be authenticated, but must not be encrypted
C: Ciphertext
K: Secret Key
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(A)=Pr 𝐴𝑬𝒏𝒄𝐾(.,.,.) ⇒ 1 − Pr 𝐴$ (.,.,.) ⇒ 1

𝐀𝐝𝐯Π
auth(A)=Pr 𝐴𝑬𝒏𝒄𝐾 .,.,. , 𝑫𝒆𝒄𝐾(.,.,.) forges

𝑬𝒏𝒄𝑲(. , . , . ) $(. , . , . )

N, AD, M

A
C C

𝑬𝒏𝒄𝑲(. , . , . ) 𝑫𝒆𝒄𝑲(. , . , . )

N, AD, M

AC M or⊥

N, AD, C
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Security Analysis
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𝜎𝑒: total number of calls to the compression function in encryption queries

𝝈: total number of calls to the compression function in all (encryption and verification) queries

𝑞𝑣: the number of decryption (verification) queries

ℓ𝑚𝑎𝑥: the maximum number of message blocks in any query

𝒏: the output length of the compression function in bits

𝜏: the tag length

𝑡′ = 𝑡 + 𝑐𝑛𝜎

𝐀𝐝𝐯OMD 𝐹,𝜏
priv

(𝑡, 𝜎𝑒 , ℓ𝑚𝑎𝑥)=𝐀𝐝𝐯𝐹
p𝑟𝑓

(𝑡′, 2𝜎𝑒)+
𝟑𝝈𝒆

𝟐

𝟐𝒏

𝐀𝐝𝐯OMD 𝐹,𝜏
auth (𝑡, 𝑞𝑣, 𝜎, ℓ𝑚𝑎𝑥)=𝐀𝐝𝐯𝐹

p𝑟𝑓
(𝑡′, 2𝜎)+

𝟑𝝈𝟐

𝟐𝒏
+

𝑞𝑣ℓ𝑚𝑎𝑥

2𝑛
+
𝑞𝑣

2𝜏
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Modular, Simple Proof:

 Step 1: (Idealized) Generalized OMD using a tweakable random function 

 Step 2: Realization of the tweakable random function using a tweakble PRF

 Step 3: Instantiation of the tweakable PRF using a PRF 
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Taga
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Tag
𝝉
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Tage

Taga
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𝟎 𝑅 𝑁,2,0 𝑅 𝑁,3,0 𝑅 𝑁,ℓ,0 𝑅 𝑁,ℓ,1𝑅 𝑁,1,0

.   .   .

𝑅 1,0 𝑅 𝑎−1,0 𝑅 𝑎,0

Proof Step 1: Generalized OMD (G-OMD)
Each call to the tweakable random function uses a new distinct tweak.
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⊕𝑹 𝑻

Proof Step 2

𝑭𝑲
𝑻 𝑭𝑲

≊ ≊

𝚫𝑲(𝑻)

Proof Step 3

The XE method 
(Rogaway, ASIACRYPT 2004):

Cause of 
𝟑𝝈𝟐

𝟐𝒏
in the security bounds 
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Performance 

We have done some preliminary performance measurements on Intel Core i5-2415M.

 The results show that OMD-sha256 and OMD-sha512 have reasonable software performance 
comparable to AES-GCM (while providing much higher security levels).   

More optimized implementations and performance measurements will be available through 
the CAESAR website .
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Timing Measurements for some different implementations of 
OMD-sha256
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Timing Measurements for some different implementations of 
OMD-sha512
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Performance of GCM and OCB (without AES-NI)
Source: http://www.cs.ucdavis.edu/~rogaway/ocb/index.html
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Performance and Security Comparison
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Message length 
(bytes)

AES-OCB

cpb

AES-GCM

cpb

OMD-sha256

cpb

OMD-sha512

cpb

128 16.14 32.31 44.56 45.93 

256 11.94 27.12 36.37 34.11 

512 9.84 24.61 32.28 28.11 

1024 8.80 23.36 30.34 25.18 

4096 8.05 22.40 28.77 23.28 

4096 1.48 4.17 2.87 (Projected) N/A

Security 64 bits 64 bits 127 bits 255 bits

Performance (rate) measurements are in “cycles per byte” (cpb).

Without AES-NI and 
Intel SHA Extensions

With AES-NI and 
Intel SHA Extensions
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More recent results on performance of SHA-256 presented at the SHA3 2014 Workshop by Shay Gueron

OMD-sha256 
performs 
about 3 times 
slower than 
SHA-256, so we 
expect about 
2.7 cpb for 
OMD-sha256.



OMD-sha256 Performance with Associated Data
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OMD-sha512 Performance with Associated Data
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OMD offers: 

 High security level beyond the classical 64-bit security by AES-based designs (e.g. 
127 bits for OMD-sha256 and 255 bits for OMD-sha512).
 Provable security based on a well-studied standard property of a widely-used 

primitive.
 Simplicity. 
 Patent-freeness (does not use any patented algorithm structures; such as, PMAC 

or OCB as a subroutine).
 Not relying on a blockcipher or ideal permutation (Don't Put All Your “Security” 

Eggs in One or Two Baskets!)
 Acceptable performance, comparable with that of the standardized AES-GCM 

scheme.
 On future processors with Intel SHA Extensions, OMD-sha256 will offer an appealing 

combination of high performance (about 3 cpb) and high security level (127 bits).     
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Nonce-Misuse Resistance?

OMD, as submitted to CAESAR, is not aimed to be 
misuse resistant because we want to have an online 
encryption process!

It has some weak level of misuse resistance (e.g. 
authenticity of the message is preserved) but we do not 
claim any security beyond nonce reuse.
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Nonce-Misuse Resistance?

Can an online AEAD provide any useful privacy after 
nonce is reused?

I have posted a note answering this question negatively 
to the Google discussion group of CAESAR titled 
“Carefull with Misuse-Resistance of Online AEAD 
Schemes”. 
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Nonce-Misuse Resistance?

“Misuse Resistant variants of the OMD Authenticated 
Encryption Scheme” can be found in our paper in
ProvSec 2014. 

These variants, as expected, are two-pass unlike OMD 
which is one-pass.
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Thanks!
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Questions?
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Appendix: Criteria for the Masking Function 𝛥𝐾(𝑇)
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Appendix: Computing the Masking Function

There are different ways to compute the masking values to satisfy these criteria. In OMD, we use the method 
proposed by Krovetz and Rogaway in FSE 2011 [16].


