### Jérémy Jean - Ivica Nikolić - Thomas Peyrin

KIASU

NTU - Singapore

### **DIAC 2014** Santa Barbara, USA - August 23, 2014

http://www1.spms.ntu.edu.sg/~syllab/KIASU



Security 0000

### Summary

- ▷ first and only adhoc tweakable AES-128 ...
- ... which allows us to provide 2<sup>128</sup> guarantee for both integrity and forgery - no birthday security !
- extremely fast in software, on par with OCB3 for long messages
- fast for short messages minimal overhead as no initialization is needed
- quite small in hardware
- ▷ parallelizable
- very simple almost direct plug-in of AES-128 (reuse existing security analysis and implementations), backward compatible with AES-128
- ▷ we provide a nonce-misuse resistant mode if needed

### Outline

### Description of KIASU

- Operating mode(s)
- The tweakable block cipher KIASU-BC

### Security

Performances and Features

### Conclusion

### $KIASU \neq$ , KIASU = and KIASU - BC

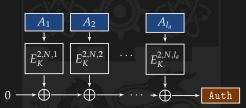
We have two operating modes  $KIASU \neq and KIASU =$ , both built upon the same tweakable block cipher named KIASU-BC.

### **Operating modes:**

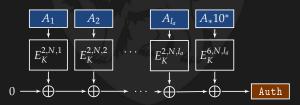
- $\triangleright$  KIASU $\neq$  is for nonce-respecting (based on OCB3)
- ▷ KIASU= is for nonce-misuse resistance (based on COPA)
- both modes are parallelizable

### The tweakable block cipher KIASU-BC :

- ▷ message of n = 128 bits
- ▷ key of k = 128 bits
- ▷ tweak of t = 64 bits


### Outline

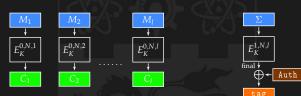
### Description of KIASU Operating mode(s)


**nonce-respecting mode:** KIASU $\neq$ 

### $KIASU \neq$ is based on OCB3

For Associated Data (full block):




For Associated Data (partial block):

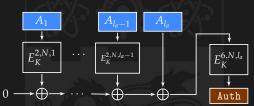


### **nonce-respecting mode:** KIASU≠

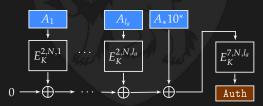
### $KIASU \neq$ is based on OCB3

For Plaintext (full block):




### For Plaintext (partial block):

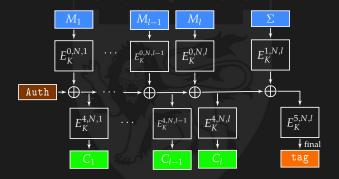



nonce-misuse resistant mode: KIASU=

### KIASU = is based on COPA

For Associated Data (full block):



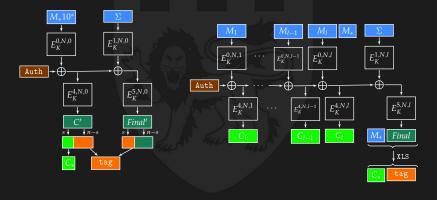

For Associated Data (partial block):



nonce-misuse resistant mode: KIASU=

KIASU = is based on COPA

### For Plaintext (full block):




nonce-misuse resistant mode: KIASU=



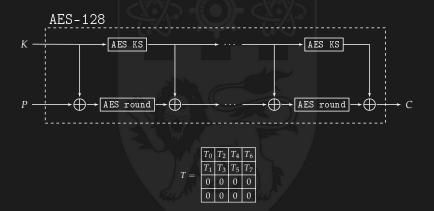
For Plaintext (single partial block):

For Plaintext (partial block):



### Outline

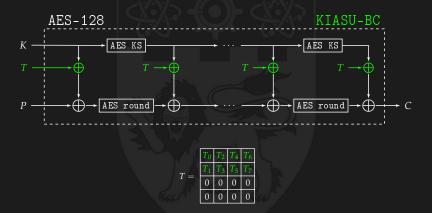
### • Description of KIASU


- Operating mode(s)
- ▷ The tweakable block cipher KIASU-BC

### Security

- Performances and Features
- Conclusion

### The tweakable block cipher KIASU-BC


KIASU-BC is **exactly** the AES-128 cipher, but with a fixed 64-bit tweak value *T* XORed to each subkey (on the two first rows).



TWEAKEY framework (see next presentation and AsiaCrypt 2014)

### The tweakable block cipher KIASU-BC

KIASU-BC is **exactly** the AES-128 cipher, but with a fixed 64-bit tweak value *T* XORed to each subkey (on the two first rows).



TWEAKEY framework (see next presentation and AsiaCrypt 2014)

Security 0000

### Outline

## O Security

Security (hite)

### **Security claims (in** log<sub>2</sub>**)**

|                                   | Security (bits) |        |  |
|-----------------------------------|-----------------|--------|--|
| nonce-respecting user             | KIASU $ eq$     | KIASU= |  |
| Confidentiality for the plaintext | 128             | 64     |  |
| Integrity for the plaintext       | 128             | 64     |  |
| Integrity for the associated data | 128             | 64     |  |

|                                   | Security (Dits) |        |  |
|-----------------------------------|-----------------|--------|--|
| nonce-misuse user                 | KIASU $\neq$    | KIASU= |  |
| Confidentiality for the plaintext | none            | 64     |  |
| Integrity for the plaintext       | none            | 64     |  |
| Integrity for the associated data | none            | 64     |  |

Security (hite)

### **Conjectured security claims (in** log<sub>2</sub>**)**

|                                   | Security (bits) |        |  |
|-----------------------------------|-----------------|--------|--|
| nonce-respecting user             | KIASU $\neq$    | KIASU= |  |
| Confidentiality for the plaintext | 128             | 128    |  |
| Integrity for the plaintext       | 128             | 128    |  |
| Integrity for the associated data | 128             | 128    |  |

|                                   | Security (Dits) |        |  |
|-----------------------------------|-----------------|--------|--|
| nonce-misuse user                 | KIASU $\neq$    | KIASU= |  |
| Confidentiality for the plaintext | none            | 64     |  |
| Integrity for the plaintext       | none            | 64     |  |
| Integrity for the associated data | none            | 64     |  |

### Security of KIASU-BC

The security of KIASU-BC is the same as AES-128 for a fixed tweak. The tricky part is to analyse what happens when the tweak varies.

### If the key is fixed and one varies the tweak:

KIASU-BC's tweak schedule has been chosen such that it is itself a good key schedule.

Bad idea: adding a tweak on the entire 128-bit state, since trivial and very good related-tweak differential paths would exist.

### If both the key and tweak vary:

KIASU-BC was designed such that no interesting interaction between the key schedule and the tweak schedule will exist. We put a special focus on attacks which are highly impacted by the key schedule:

- ▷ related-key related-tweak attacks
- meet-in-the-middle attacks

### Security of KIASU-BC

### related-key related-tweak attacks

We prove that no good related-key related-tweak attacks differential path exist for KIASU (even boomerang), with a computer-aided search tool.

| rounds | active<br>SBoxes | upper bound on<br>probability | method used       |
|--------|------------------|-------------------------------|-------------------|
| 1-2    | 0                | 2 <sup>0</sup>                | trivial           |
| 3      | 1                | $2^{-6}$                      | Matsui's          |
| 4      | 8                | $2^{-48}$                     | Matsui's          |
| 5      | $\geq 14$        | $2^{-84}$                     | Matsui's          |
| 7      | ≥ 22             | $2^{-132}$                    | ex. split (3R+4R) |

Security proofs on operating modes

When the nonce is not reused, we ensure that every call to KIASU-BC will have a distinct tweak input value

We can directly reuse the OCB3 and COPA operating modes security proofs.

- ▶ but we can ensure full 128-bit security
- $\triangleright$  the proofs are simpler (see  $\Theta$ CB3 and  $\Omega$ CB3 proofs)

Universal hash based tweakable block ciphers won't provide full 128-bit security (or with bad efficiency), due to the possibility of collisions between the inputs/outputs of the internal block cipher Security 0000

### Outline

### ● Description of KIASU ▷ Operating mode(s)

The tweakable block cipher KIASU-BC

Security

9 Performances and Features

Conclusion

### Measuring authenticated encryption speed

One should consider several scenarios when measuring speed for AE: *K*<sub>Δ</sub>*N*<sub>Δ</sub>: when key and nonce are random (what SUPERCOP is currently measuring ?) *K*<sub>Δ</sub>*N*<sub>+</sub>: when key is random, but nonce is counter *K*<sub>=</sub>*N*<sub>Δ</sub>: when key is fixed, but nonce is random *K*<sub>=</sub>*N*<sub>+</sub>: when key is fixed, and nonce is counter *K*<sub>=</sub>*N*<sub>=</sub>: when both key and nonce are fixed (for nonce-misuse resistant schemes)

It would be great to measure all these 5 cases in SUPERCOP to get a better picture (probably  $K_{\Delta}N_{\Delta}$  and  $K_{\Delta}N_{+}$  are very similar)

When people present speed results, they should make clear in which of these 5 cases they made the measurements.

KIASU is rather neutral with regards to the first 4 cases (having  $K_{=}N_{\Delta}$  or  $K_{=}N_{+}$  makes no difference)

### **Software performances (in c/B) - case** $K_{\Delta}N_{\Delta}$

### both $KIASU \neq and KIASU = can be parallelized$

| KIASU $\neq$              | 512B  | 1024B | 4096B | 65536B |
|---------------------------|-------|-------|-------|--------|
| Intel Haswell             | 1.37  | 1.04  | 0.80  | 0.72   |
| Intel Sandy Bridge        | 2.05  | 1.61  | 1.15  | 0.99   |
| Intel Haswell (no AES-NI) | 19.31 | 13.47 | 9.08  | 7.71   |

| KIASU=                    | 512B  | 1024B | 4096B | 65536B |
|---------------------------|-------|-------|-------|--------|
| Intel Haswell             | 2.32  | 1.88  | 1.59  | 1.49   |
| Intel Sandy Bridge        | 3.79  | 3.13  | 2.55  | 2.06   |
| Intel Haswell (no AES-NI) | 26.77 | 20.91 | 16.61 | 15.22  |

### Software performances (in c/B) - Fast on small messages

### KIASU is fast for small messages, as it requires no initialization.

- sponge-like designs require strong initialization, AES-GCM-like designs usually prepare computation tables
- "simple IMIX" is a weighted average simulating sizes of typical IP packages:
   7 parts of 40B, 4 parts of 576B, 1 part of 1500B

▷ maximum transmission unit (MTU) for Ethernet is 1500 bytes

| KIASU≠             | 40B   | 576B | 1500B | IMIX |
|--------------------|-------|------|-------|------|
| Intel Haswell      | 9.45  | 1.31 | 0.96  | 1.74 |
| Intel Sandy Bridge | 10.85 | 2.01 | 1.51  | 2.43 |
|                    | 21    | B/   |       |      |
| KIASU=             | 40B   | 576B | 1500B | IMIX |
| Intel Haswell      | 25.03 | 2.30 | 2.30  | 3.86 |
| Intel Sandy Bridge | 31.53 | 3.54 | 3.64  | 5.50 |

### Hardware performances

- easy to reuse existing tricks from AES-128 FPGA/ASIC implementations
- ▶ save implementation and area cost if co-implemented with AES-128
- being fast for small messages is very valuable, as small messages is a typical use-case of hardware applications

### For FPGA (ongoing work):

- Marc Stöttinger and He Wei from NTU worked on a first (not yet optimized) round-based FPGA implementation of KIASU-BC
- 1989 slices (neither internal BRAM nor external RAM) for 1.08Gbit/s throughput on a Virtex-5 FPGA

### For ASIC (ongoing work):

- we estimate that KIASU-BC can be implemented with 3000GE (reusing smallest know AES-128 implementation - 2400 GE)
- ▷ we estimate that one has to add an extra 1000 GE for implementing  $KIASU \neq$ , and 2000 GE for KIASU =

### **Others features**

KIASU-BC is backward compatible with AES-128: simply set T = 0. This will save implementation overheads

KIASU will perform well on many platforms, even legacy ones, since it is very close to AES-128. This might not be true for candidates that perform multiplications in a big Galois field

### tweakable block ciphers are very useful building blocks:

- block cipher, stream cipher
- parallel MAC
- ▷ parallel authenticated encryption: like OCB3 or COPA, but simpler design/proofs and much higher security bounds
- hash function: use the tweak input as block counter (HAIFA framework) or to perform randomized hashing
- ▷ tree hashing: use the tweak to encode the position in the tree
- PRNG, KDF, disk encryption

Security 0000

### Outline

# Conclusion

### KIASU

### KIASU-BC is the first AES-based ad-hoc tweakable block cipher

### KIASU:

- ▷ ✓ faster than AES-GCM: extremely fast in software, especially for the message sizes that matter
- ▷ ✓ smaller than AES-GCM: good hardware profile
- ▷ ✓ more versatile than AES-GCM: good performances in any platform
- ▷ ✓ much higher security than AES-GCM: full 128-bit security
- ▷ ✓ much simpler than AES-GCM: simple design and proofs
- ▷ ✓ more features than AES-GCM: can easily switch to a nonce-misuse resistant mode
- ▷ ✓ parallelizable

