Security 0000 *Implementation results* 0000

Conclusion

CAESAR candidate SCREAM Side-Channel Resistant Authenticated Encryption with Masking

Vincent Grosso¹ <u>Gaëtan Leurent</u>^{1,2} François-Xavier Standert¹ Kerem Varıcı¹ François Durvaux¹ Lubos Gaspar¹ Stéphanie Kerckhof¹

¹UCL, Belgium & ²Inria, France scream@uclouvain.be

DIAC 2014

G. Leurent (UCL, Inria)

CAESAR candidate SCREAM

DIAC 2014 1 / 21

Authenticated Encryption

Many different ways to build authenticated encryption

- Block cipher based
 - 2-pass: GCM, CCM, ...
 - 1-pass: OCB, ...
 - Nonce-misuse resistant: SIV, COPA, POET, ...
- Permutation based
 - SpongeWrap, DuplexWrap, MonkeyWrap, APE, ...
- Stream cipher + MAC
 - Encrypt-then-MAC, MAC-then-Encrypt, Encrypt-and-MAC
- Dedicated
 - Helix/Phelix, ALE, ...

Security 0000 *Implementation results* 0000

Conclusion

Authenticated Encryption

Many different ways to build authenticated encryption

Birthday bound security

Most block cipher-based and permutation-based modes only have birthday bound security

They need a 2*n*-bit primitive to resist attacks with 2^{*n*} data and 2^{*n*} time Side question: is this n-bit security or 2*n*-bit security?

- Use a 128-bit primitive: low security
- Design a larger primitive: larger hardware

G. Leurent (UCL, Inria)

Security 0000 *Implementation results* 0000

Conclusion

Authenticated Encryption

Many different ways to build authenticated encryption

Birthday bound security

Most block cipher-based and permutation-based modes only have birthday bound security

They need a 2*n*-bit primitive to resist attacks with 2^{*n*} data and 2^{*n*} time Side question: is this n-bit security or 2*n*-bit security?

Beyond birthday security

Tweakable Block Ciphers provide security beyond the birthday bound. Modes with an *n*-bit TBC resist attacks with 2^n data and 2^n time.

G. Leurent (UCL, Inria)

Security 0000 *Implementation results* 0000

Definition (Tweakable block cipher – Liskov, Rivest, Wagner)

Family of permutation indexed by a key K (secret) and a tweak T (public)

For each tweak $T, x \mapsto E_K(T, x)$ is an idenpendant PRF

- TAE: Tweakable Authenticated Encryption (Liskov, Rivest, Wagner)
 - Nonce-based AEAD, inspired by OCB
 - Tweak is Nounce+Counter
 - Full *n*-bit security

G. Leurent (UCL, Inria)

Security 0000 *Implementation results* 0000

Tweakable block cipher based AE modes

TAE Features

- Fully parallelizable
- 128-bit security with 128-bit state
 - + key, nounce, checksum
- Low overhead (1TBC); good for small messages
- Minimal extension
- Patent-free?

Security 0000 *Implementation results* 0000

Conclusion

TBC design

We want to design a tweakable block cipher that is efficient on wide range of platform and secure.

- Side-channel resistance necessary in many lightweight settings
 - Avoid your car keys / credit card being cloned
- Usual approach:
 - 1 Design a secure cipher (AES, PRESENT, Noekeon, ...)
 - 2 Implement with side-channel countermeasures
- ▶ We use LS-Designs, with a reverse approach:
 - Use operations that are easy to mask
 - In order to design a secure cipher
- Previous work: Zorro, PICARO

G. Leurent (UCL, Inria)

Security 0000 *Implementation results* 0000

Conclusion

TBC design

We want to design a tweakable block cipher that is efficient on wide range of platform and secure.

- Side-channel resistance necessary in many lightweight settings
 - Avoid your car keys / credit card being cloned
- Usual approach:
 - 1 Design a secure cipher (AES, PRESENT, Noekeon, ...)
 - 2 Implement with side-channel countermeasures
- We use LS-Designs, with a reverse approach:
 - 1 Use operations that are easy to mask
 - 2 In order to design a secure cipher
- Previous work: Zorro, PICARO

Security

Implementation results 0000

Conclusion

Choice of operations

Important remark

Logic gates are easier to mask than table-based S-boxes (If we target Boolean masking)

- Use bitsliced S-boxes (SERPENT, Noekeon, ...)
 - One word contains the msb (resp. 2nd bit, ...) of every S-box
 - Bitwise operations: 8 S-boxes in parallel using 8-bit words
 - Use a small number of non-linear gates
- We can use tables for the diffusion layer!
 - Efficient, good diffusion
 - Easy to mask (linear)

Security

Implementation results 0000

Conclusion

Choice of operations

Important remark

Logic gates are easier to mask than table-based S-boxes (If we target Boolean masking)

- Use bitsliced S-boxes (SERPENT, Noekeon, ...)
 - One word contains the msb (resp. 2nd bit, ...) of every S-box
 - Bitwise operations: 8 S-boxes in parallel using 8-bit words
 - Use a small number of non-linear gates
- We can use tables for the diffusion layer!
 - Efficient, good diffusion
 - Easy to mask (linear)

Conclusion

LS-designs

Mathematical description: SPN network

- S-boxes
 - With simple gate representation
- Linear diffusion layer
 - Mixes the full state
 - Binary coefficients
- Good design criterion: wide-trail

Bitslice implementation:

- S-box as a series of bitwise operations with CPU words
- L-box tables for diffusion layer
- Easy to mask (simple non-linear ops., complex linear ops.)

G. Leurent (UCL, Inria)

Security

Implementation results 0000

Conclusion

LS-designs

 $x \leftarrow P \oplus K$ for $0 \le r < N_r$ do ▷ S-box layer: for $0 \le i < l$ do $x[i, \star] = S[x[i, \star]]$ ▷ L-box layer: for $0 \le j < s$ do $x[\star,j] = L[x[\star,j]]$ ▷ Key addition: $x \leftarrow x \oplus k_r$

return x

G. Leurent (UCL, Inria)

State as a bit-matrix

S-box layer

/	\ \
\	/
←	\longrightarrow
<	\rightarrow
_	~
\	

L-box layer

Security

Implementation results 0000

Conclusion

SCREAM S-box and *L*-box

For SCREAM, we reuse the components of Robin/Fantomas:

- 8-bit S-box
 - Built from 3 smaller S-boxes (Feistel-like structure)
 - $Pr_{lin} = 2^{-2}$, $Pr_{diff} = 2^{-4}$, 11/12 non-linear gates
- 16-bit L-box
 - Branch number 8 (optimal for a binary matrix)
 - Orthogonal matrix: differential and linear properties equivalent
 - Built from RM(2, 5) or QR[32, 16, 8]

Security 0000 *Implementation results* 0000

Conclusion

Tweak/Key schedule

- Robin/Fantomas with a tweak/key schedule
 - 128-bit block
 - 128-bit key
 - 128-bit tweak
- Tweak and key have a similar role (cf. TWEAKEY framework)
- ▶ Must be secure against chosen-tweak attacks (≈ related-key)
- Use ideas from LED:

- One step is two rounds: B active S-Boxes
- At least half the steps are active with related-key

G. Leurent (UCL, Inria)

Conclusion

iSCREAM: *involutive components*

Tweak every step; key every second step

Rotation avoids optimal trails with tweak difference

- $\Delta \rightarrow \Delta$: 8 active S-Boxes (involution)
- $\Delta \rightarrow \Delta \stackrel{16}{\lll} 1$: 12 active S-Boxes

SCREAM: non-involutive components

- ▶ Key-schedule based on a [3, 2, 2]₄ code.
 - Two consecutive subkeys cannot be inactive (with related key).
 - Tweak difference gives the same *truncated* difference in all subkeys.

- Optimize L-box to avoid specific trails
 - 1-R trails $\Delta \rightarrow \Delta$ have at least 14 active S-boxes
 - RK trails with consecutive active steps are equivalent to SK trails
 - 4-R trail -xx- with tweak difference δ
 - $\delta \rightsquigarrow a, b \rightsquigarrow \delta$ gives $b \rightsquigarrow \delta \rightsquigarrow a$; at least 20 active S-boxes

G. Leurent (UCL, Inria)

Security

Implementation results 0000

Conclusion

Outline

SCREAM design TAE Mode LS-Design TBC

Security Security Analysis Initial Mistakes

Implementation results Software Hardware

Conclusion

SC.	AN.	sign

- ► Fixed key ⊕ Chosen tweak ≈ Related key At least one half of the steps active
- ► Related key ⊕ Chosen tweak ≈ Related key with more freedom At least one half/one third of the steps active (iScream/Scream)
- Wide-trail strategy: each active 2-round step has at least 8 active S-boxes.

- ► Fixed key ⊕ Chosen tweak ≈ Related key At least one half of the steps active
- ► Related key ⊕ Chosen tweak ≈ Related key with more freedom At least one half/one third of the steps active (iScream/Scream)
- Wide-trail strategy: each active 2-round step has at least 8 active S-boxes.

- ► Fixed key ⊕ Chosen tweak ≈ Related key At least one half of the steps active
- ► Related key ⊕ Chosen tweak ≈ Related key with more freedom At least one half/one third of the steps active (iScream/Scream)
- Wide-trail strategy: each active 2-round step has at least 8 active S-boxes.

- ► Fixed key ⊕ Chosen tweak ≈ Related key At least one half of the steps active
- ► Related key ⊕ Chosen tweak ≈ Related key with more freedom At least one half/one third of the steps active (iScream/Scream)
- Wide-trail strategy: each active 2-round step has at least 8 active S-boxes.

Minimum nu	mber of active	S-Ba	oxes										
Setting	Steps:	1	2	3	4	5	6	7	8	9	10	11	12
Single Key	Scream-10 iScream-12	0 0	0 0	8 8	8 8	16 16	16 16	24 24	24 24	32 32			
Related Key	Scream-12 iScream-14	0 0	0 0	8 8	8 16	8 16	16 16	16 24	16 32	24 32	24 32	24 40	32 40

Security ○●○○ *Implementation results* 0000

Conclusion

Improved Security Analysis

- Components designed to make those simple trails expensive.
 - Combine analysis at step level, and analysis at S-box level
- Optimal trails have two third of the steps active (fixed key).
 - See submission for more details

Minimum number of active S-Boxes													
Setting	Steps:	1	2	3	4	5	6	7	8	9	10	11	12
Single Key	Scream-10 iScream-12	0 0	8 8	14 12	20 16	28 24	35 28	32	40				
Related Key	Scream-12 iScream-14	0 0	0 0	8 8	14 16	14 16	22 16	28 24	28 32	36 32	32	40	48

Security

Implementation results 0000

Conclusion

SCREAM v1 problem

In SCREAM v1, we tried to optimize the use of counters in TAE... ...and failed :-(

In SCREAM v2 we stick to the original TAE.

Thanks

Thanks to Wang Lei and Sim Siang for finding out the mistake!

G. Leurent (UCL, Inria)

CAESAR candidate SCREAM

DIAC 2014 14 / 21

Security ○○○● *Implementation results* 0000

Conclusion

iSCREAM problem

iSCREAM uses an involutive S-Box and L-Box...

...with some unexpected properties :-(

The strong structure of the involutive L-Box, combined with low-weight round constants, allows a self-similarity attack with weak keys or related keys.

We focus on SCREAM at the moment We plan to redesign iSCREAM in the future

Simple tweak: add full constants

Thanks

Thanks to Henry Gilbert, Gregor Leander, Brice Minaud, Sondre Rønjom for finding out!

G. Leurent (UCL, Inria)

CAESAR candidate SCREAM

DIAC 2014 15 / 21

Security 0000 $\substack{ Implementation \ results \\ \circ \circ \circ \circ }$

Conclusion

Outline

SCREAM design TAE Mode LS-Design TBC

Security Security Analysis Initial Mistakes

Implementation results Software Hardware

Conclusion

Implementation: High-end CPUs

- Use large registers (128-bit) for bitsliced S-box
- Use vector permute instructions for L-box
 - 4-bit to 8-bit table with pshufb in SSSE3, vtbl in NEON
 - 16-bit to 16-bit table as 8 small tables
 - Constant time (no cache timing side-channel)

Results

- Fantomas has performances close to AES (excluding hardware AES)
- Tweak gives more security, requires more rounds (20 vs. 12)
- The TAE mode has a very small overhead
- Performances similar to AES-GCM

(excluding hardware AES)

G. Leurent (UCL, Inria)

Security 0000 Implementation results $\bullet \circ \circ \circ$

Conclusion

Implementation: High-end CPUs

Software performance for long messages (cycles/byte)

	SCREAM	Scream	Fantomas	AES-GCM	AES
ARM Cortex A15	23.5	21.8	14.2	31.1	17.8
Atom	56	55	33.3	28.8	17
Nehalem	10.8	9.4	6.3	9.9	6.9
Ivy Bridge AES-NI	8.0	7.1	4.2	8.3	5.4
Ivy Bridge AES-NI				2.5	1.3

More detailed benchmarks soon in eBASH...

G. Leurent (UCL, Inria)

Security 0000 Implementation results $\bullet \circ \circ \circ$

Conclusion

Implementation: High-end CPUs

Software performance for long messages (cycles/byte)

	SCREAM	Scream	Fantomas	AES-GCM	AES
ARM Cortex A15	23.5	21.8	14.2	31.1	17.8
Atom	56	55	33.3	28.8	17
Nehalem	10.8	9.4	6.3	9.9	6.9
Ivy Bridge AES-NI	8.0	7.1	4.2	8.3	5.4
Ivy Bridge AES-NI				2.5	1.3
Haswell AES-NI Haswell AES-NI	5.7?	4.7? ORK I	N PRO	?? Calles	?? 5 0.75

More detailed benchmarks soon in eBASH...

G. Leurent (UCL, Inria)

CAESAR candidate SCREAM

DIAC 2014 17 / 21

Security 0000 Implementation results $\bullet \circ \circ \circ$

Conclusion

Implementation: High-end CPUs

Software performance for long messages (cycles/byte)

	SCREAM	Scream	Fantomas	AES-GCM	AES
ARM Cortex A15	23.5	21.8	14.2	31.1	17.8
Atom	56	55	33.3	28.8	17
Nehalem	10.8	9.4	6.3	9.9	6.9
Ivy Bridge AES-NI	8.0	7.1	4.2	8.3	5.4
Ivy Bridge AES-NI				2.5	1.3
Haswell AES-NÍ Haswell AES-NI	5.7?	4.7? ORK I	N PRC		?? 5 0.75
Future Intel CPU	AVX512,	VPTERNL	_OG,		

More detailed benchmarks soon in eBASH...

G. Leurent (UCL, Inria)

Implementation: AVR micro-controller

- TBC performance: 7650 cycles
 - Using 1kB table
 - Smaller tables if needed
- For many embedded devices, side-channel attack are a real threat
- SCREAM has very good performances for masked implementations
 - Noekeon also very good (similar components)

Security 0000 $\begin{array}{c} \textit{Implementation results} \\ \circ \bullet \circ \circ \end{array}$

Conclusion

Implementation: AVR micro-controller

G. Leurent (UCL, Inria)

CAESAR candidate SCREAM

DIAC 2014 18 / 21

Security

 $\begin{array}{c} \textit{Implementation results} \\ \circ \circ \bullet \circ \end{array}$

Conclusion

Implementation: Hardware

- We study implementations with a 128-bit datapath
 - Reasonable price/performance ration
- Low amount of logic in one round
 - We can unroll one full step per clock cycle
 - One step ≈ one AES round
 - ► SCREAM TBC ≈ AES
- Low overhead for TAE mode
 - Limited extra memory: small total state

Security

 $\substack{Implementation \ results \\ \circ \circ \bullet \circ }$

Conclusion

Implementation: Hardware

Hardware performance of the TBC: ASIC

Су	cle	Mode E,D,ED	Area [µm²]	f _{max} [MHz]	Latency [cycles]	Throughput [Mbps]
AES	1R	E	17921	444	12	4740
		D	20292	377	22	2195
		ED	24272	363	≈17	≈2997
Scream-10	1R	Е	12951	751	21	4577
		D	12951	751	21	4577
		ED	17292	751	21	4577
Scream-10	2R	Е	17292	446	11	5190
		D	17292	446	11	5190
		ED	25974	446	11	5190

Security 0000 $\begin{array}{c} \textit{Implementation results} \\ \circ \circ \bullet \circ \end{array}$

Conclusion

Implementation: Hardware

Hardware performance of the TBC / full mode: Virtex 6 FPGA

Су	cle	Slices [slices]	BRAM [×18 <i>k</i>]	f _{max} [MHz]	Latency [cycles]	Throughput [Mbps]
AES	1R	562 136	- 10	211 308	11 11	2450 3585
Scream-10	1R 2R	251 167 416 190	- 16 - 16	321 287 193 278	20 20 10 10	2050 1836 2470 2965
SCREAM-10	1R 2R	512 571	_ _	302 146	$20 \cdot (\ell + 1) \\ 10 \cdot (\ell + 1)$	1932 1870

Implementation: overview

- Hardware:
 - The tweakable block cipher costs about the same as AES
 - Low overhead for TAE mode (limited extra memory)
 - Parallelism can be leveraged in a pipelined implementation

Micro-controller:

- Good performance (< 8k cycles)
- Very good if masking is needed

High-end CPU

- Parallelism exploited with SIMD
- Performance similar to AES-GCM

(excluding hardware AES instructions)

Security

Implementation results 0000

Conclusion

SCREAM Features

TAE Mode

- Nonce-based AEAD
- Fully parallelizable
- 128-bit security
- Low overhead (1TBC)
- Minimal extension
- Patent-free?

LS Tweakable Block Cipher

- Clean and simple design
 - SPN, Wide-trail
 - Simple bounds for trails
- Scalable
 - Hardware: small state
 - Microcontrollers: masking
 - High-end CPUs: vectorized

High security, high performances

Small tweaks to fix initial mistakes

• The tweakable block cipher is also a useful primitive in itself.

G. Leurent (UCL, Inria)

FPGA implementation results

Extra Slides

FPGA implementation results

G. Leurent (UCL, Inria)

CAESAR candidate SCREAM

DIAC 2014 22 / 21

FPGA implementation results

Tweakable Block Cipher:

For Virtex 6 (XC6 VLX 240T - 3 FF1156):

		Π.	۰.	н	-	Timing p	erforma	nce strate	gy	Area	reductio	n strategy	,
	DP size	BRAMs	UNROLI	REG_O	Cycles	Regs/LUTs	Slices	BRAMs	F _{max}	Regs/LUTs	Slices	BRAMs	F _{max}
	128	F	F		20	404/823	251	0	321	400/640	187	0	286
5	128	F	т		10	399/1520	416	0	193	398/1033	282	0	153
bit	128	Т	F	Т	20	401/629	205	8x18k	287	400/479	147	8x18k	261
CRI 128	128	т	F	F	20	273/609	167	8x18k	287	273/460	126	8x18k	261
Š.	128	T ²	Т	Т	10	398/670	177	16x18k	277	398/665	204	16x18k	252
	128	T ²	т	F	10	271/667	190	16x18k	278	271/643	201	16x18k	252
SCREAM 16b	16	F	F		320	780/643	222	0	400	260/359	107	0	237
AES1	128	F	F		11	686/2317	815	0	211	526/1431	398	0	154
AES2	128	F	F		11	619/1712	562	0	211	398/1430	392	0	154
AES3	128	Т	F		11	398/481	136	10x18k	308	398/468	152	10x18k	284
AES4	128	Т	F		11	398/476	163	10x18k	308	270/450	133	10x18k	285

Notes:

¹ Parameter settings: T = True; F = False; --- = not applicable

² BRAMs operate on 2x higher clock frequency than the rest of the core

³ Key initialization requires extra 1 clock cycle for 128b version or 8 clock cycles for 16b version

G. Leurent (UCL, Inria)

FPGA implementation results

Authenticated Encryption (full mode)

				-		Timing performance strategy				Area	reductio	n strategy	1
	DP size	TRUNC	PADD	UNROL	Cycles	Regs/LUTs	Slices	BRAMs	F _{max}	Regs/LUTs	Slices	BRAMs	F _{max}
5	128	Т	Т	Т	Х	917/2193	571	0	146	917/1755	459	0	154
bit	128	Т	Т	F	Y	920/1932	512	0	302	919/1392	363	0	289
CRI 17	128	Т	F	Т	Х	918/2109	567	0	150	917/1766	458	0	149
S	128	Т	F	F	Y	920/1588	414	0	286	919/1392	362	0	312

X = (A + P + 1)*10 + 2; Y = (A + P + 1)*20 + 2; A - number of 128b blocks of associated data, P - number of 128b blocks of the plaintext