Security
0000

. . . . *Implementation results Conclusion*

CAESAR candidate SCREAM

Side-Channel Resistant Authenticated Encryption with Masking

Vincent Grosso¹ Gaëtan Leurent^{1,2} François-Xavier Standert¹ Kerem Varıcı¹

François Durvaux¹ Lubos Gaspar¹ Stéphanie Kerckhof¹

¹UCL, Belgium & ²Inria, France scream@uclouvain.be

DIAC 2014

\bullet 00000000 *SCREAM design*

Authenticated Encryption

Implem
0000

Implementation results Conclusion

Many different ways to build authenticated encryption

Security
0000

- ▶ Block cipher based
	- ▶ 2-pass: GCM, CCM, ...
	- \blacktriangleright 1-pass: OCB, ...
	- ▶ Nonce-misuse resistant: SIV, COPA, POET, ...
- ▶ Permutation based
	- ▶ SpongeWrap, DuplexWrap, MonkeyWrap, APE, ...
- ▶ Stream cipher + MAC
	- ▶ Encrypt-then-MAC, MAC-then-Encrypt, Encrypt-and-MAC
- ▶ Dedicated
	- ▶ Helix/Phelix, ALE, ...

Many different ways to build authenticated encryption

Birthday bound security

Most block cipher-based and permutation-based modes only have birthday bound security

They need a 2n-bit primitive to resist attacks with 2ⁿ data and 2ⁿ time

Side question: is this n-bit security or 2*n-bit security?*

- ▶ Use a 128-bit primitive: low security
- ▶ Design a larger primitive: larger hardware

\bullet 00000000 *SCREAM design* Security
0000 Implen
0000 *Implementation results Conclusion Authenticated Encryption*

Many different ways to build authenticated encryption

Birthday bound security

Most block cipher-based and permutation-based modes only have birthday bound security

They need a 2n-bit primitive to resist attacks with 2ⁿ data and 2ⁿ time *Side question: is this n-bit security or* 2*n-bit security?*

Beyond birthday security

Tweakable Block Ciphers provide security beyond the birthday bound. Modes with an *n*-bit TBC resist attacks with 2ⁿ data and 2ⁿ time.

Definition (Tweakable block cipher – Liskov, Rivest, Wagner)

Family of permutation indexed by a key *K* (secret) and a tweak *T* (public)

For each tweak T , $x \mapsto E_K(T, x)$ is an idenpendant PRF

- ▶ TAE: Tweakable Authenticated Encryption (Liskov, Rivest, Wagner)
	- ▶ Nonce-based AEAD, inspired by OCB
	- ▶ Tweak is Nounce+Counter
	- ▶ Full *n*-bit security

G. Leurent (UCL,Inria) CAESAR candidate SCREAM DIAC 2014 3 / 21

TAE Features

- ▶ Fully parallelizable
- ▶ 128-bit security with 128-bit state
	- ▶ + key, nounce, checksum
- ▶ Low overhead (1TBC); good for small messages
- ▶ Minimal extension
- ▶ Patent-free?

- ▶ Side-channel resistance necessary in many lightweight settings
	- ▶ Avoid your car keys / credit card being cloned
- ▶ Usual approach:
	- *1* Design a secure cipher (AES, PRESENT, Noekeon, ...)
	- 2 Implement with side-channel countermeasures
- ▶ We use LS-Designs, with a reverse approach: **1** Use operations that are easy to mask **2** In order to design a secure cipher
- ▶ Previous work: Zorro, PICARO

G. Leurent (UCL,Inria) CAESAR candidate SCREAM DIAC 2014 4 / 21

We want to design a tweakable block cipher that is efficient on wide range of platform and secure.

- ▶ Side-channel resistance necessary in many lightweight settings
	- ▶ Avoid your car keys / credit card being cloned
- ▶ Usual approach:
	- *1* Design a secure cipher (AES, PRESENT, Noekeon, ...)
	- 2 Implement with side-channel countermeasures
- ▶ We use LS-Designs, with a reverse approach: **1** Use operations that are easy to mask
	- *2* In order to design a secure cipher
- ▶ Previous work: Zorro, PICARO

Important remark

Logic gates are easier to mask than table-based S-boxes *(If we target Boolean masking)*

- ▶ Use bitsliced S-boxes (SERPENT, Noekeon, ...)
	- ▶ One word contains the msb (resp. 2^{nd} bit, ...) of every S-box
	- \triangleright Bitwise operations: 8 S-boxes in parallel using 8-bit words
	- \blacktriangleright Use a small number of non-linear gates
- \triangleright We can use tables for the diffusion layer!
	- ▶ Efficient, good diffusion
	- ▶ Easy to mask (linear)

Important remark

Logic gates are easier to mask than table-based S-boxes *(If we target Boolean masking)*

- ▶ Use bitsliced S-boxes (SERPENT, Noekeon, ...)
	- ▶ One word contains the msb (resp. 2^{nd} bit, ...) of every S-box
	- \triangleright Bitwise operations: 8 S-boxes in parallel using 8-bit words
	- \blacktriangleright Use a small number of non-linear gates
- ▶ We can use tables for the diffusion layer!
	- ▶ Efficient, good diffusion
	- ▶ Easy to mask (linear)

Implen
0000 *Implementation results Conclusion*

LS-designs

- ▶ Mathematical description: SPN network
	- \blacktriangleright S-boxes
		- ▶ With simple gate representation

Security
0000

- ▶ Linear diffusion layer
	- ▶ Mixes the full state
	- ▶ Binary coefficients
- ▶ Good design criterion: wide-trail

- ▶ Bitslice implementation:
	- \triangleright S-box as a series of bitwise operations with CPU words
	- \blacktriangleright L-box tables for diffusion layer
	- \triangleright Easy to mask (simple non-linear ops., complex linear ops.)

 $x \leftarrow P \oplus K$ for $0 \le r < N_r$ do ▷ S-box layer: for $0 \le i < l$ do $x[i, \star] = S[x[i, \star]]$ ▷ L-box layer: for $0 \leq j < s$ do $x[\star, j] = L[x[\star, j]]$ ▷ Key addition: x ← $x \oplus k_r$ **return** *x*

.

State as a bit-matrix

S-box layer

L-box layer

For SCREAM, we reuse the components of Robin/Fantomas:

- \blacktriangleright 8-bit S-box
	- \triangleright Built from 3 smaller S-boxes (Feistel-like structure)
	- ► Pr_{lin} = 2⁻², Pr_{diff} = 2⁻⁴, 11/12 non-linear gates

\blacktriangleright 16-bit L-box

- \triangleright Branch number 8 (optimal for a binary matrix)
- \triangleright Orthogonal matrix: differential and linear properties equivalent
- ▶ Built from *RM*(2, 5) or *QR*[32, 16, 8]

- ▶ Robin/Fantomas with a tweak/key schedule
	- \blacktriangleright 128-bit block
	- \blacktriangleright 128-bit key
	- \blacktriangleright 128-bit tweak
- ▶ Tweak and key have a similar role (cf. TWEAKEY framework)
- ▶ Must be secure against chosen-tweak attacks (≈ related-key)
- ▶ Use ideas from LED:

- \triangleright One step is two rounds: β active S-Boxes
- \triangleright At least half the steps are active with related-key

▶ Tweak every step; key every second step

- \triangleright Rotation avoids optimal trails with tweak difference
	- $\triangleright \Delta \rightarrow \Delta$: 8 active S-Boxes (involution)
	- $\,\blacktriangleright\, \varDelta \to \varDelta \stackrel{\text{16}}{\lll}$ 1: 12 active S-Boxes

- ▶ Key-schedule based on a $[3, 2, 2]_4$ code.
	- ▶ Two consecutive subkeys cannot be inactive (with related key).
	- ▶ Tweak difference gives the same *truncated* difference in all subkeys.

- ▶ Optimize L-box to avoid specific trails
	- ▶ 1-R trails $\Delta \rightarrow \Delta$ have at least 14 active S-boxes
	- \triangleright RK trails with consecutive active steps are equivalent to SK trails
		- ▶ 4-R trail -xx- with tweak difference δ
		- \blacktriangleright $\delta \rightsquigarrow$ *a*, $b \rightsquigarrow \delta$ gives $b \rightsquigarrow \delta \rightsquigarrow a$; at least 20 active S-boxes

SCREAM design

TAE Mode LS-Design TBC

Security

Security Analysis Initial Mistakes

Implementation results

Software Hardware

Conclusion

Security against Differential and Linear Cryptanalysis

Implem
0000

Implementation results Conclusion

▶ Fixed key ⊕ Chosen tweak ≈ Related key At least one half of the steps active

. . . . *Security*

- ▶ Related key ⊕ Chosen tweak ≈ Related key with more freedom At least one half/one third of the steps active (iScream/Scream)
- \triangleright Wide-trail strategy: each active 2-round step has at least 8 active S-boxes.

G. Leurent (UCL,Inria) CAESAR candidate SCREAM DIAC 2014 12 / 21

Security against Differential and Linear Cryptanalysis

Implem
0000

Implementation results Conclusion

▶ Fixed key ⊕ Chosen tweak ≈ Related key At least one half of the steps active

. . . . *Security*

- ▶ Related key ⊕ Chosen tweak ≈ Related key with more freedom At least one half/one third of the steps active (iScream/Scream)
- \blacktriangleright Wide-trail strategy: each active 2-round step has at least 8 active S-boxes.

G. Leurent (UCL,Inria) CAESAR candidate SCREAM DIAC 2014 12 / 21

Implem
0000

Implementation results Conclusion

Security against Differential and Linear Cryptanalysis

▶ Fixed key ⊕ Chosen tweak ≈ Related key At least one half of the steps active

. . . . *Security*

- ▶ Related key ⊕ Chosen tweak ≈ Related key with more freedom At least one half/one third of the steps active (iScream/Scream)
- \blacktriangleright Wide-trail strategy: each active 2-round step has at least 8 active S-boxes.

. . . . *Security*

Implementation results Conclusion

Security against Differential and Linear Cryptanalysis

Implem
0000

- ▶ Fixed key ⊕ Chosen tweak ≈ Related key At least one half of the steps active
- ▶ Related key ⊕ Chosen tweak ≈ Related key with more freedom At least one half/one third of the steps active (iScream/Scream)
- \blacktriangleright Wide-trail strategy: each active 2-round step has at least 8 active S-boxes.

Minimum number of active S-Boxes

. . . . *Security*

Improved Security Analysis

Implem
0000

Implementation results Conclusion

- ▶ Components designed to make those simple trails expensive.
	- \triangleright Combine analysis at step level, and analysis at S-box level
- ▶ Optimal trails have two third of the steps active (fixed key).
	- ▶ See submission for more details

Minimum number of active S-Boxes

In SCREAM v1, we tried to optimize the use of counters in TAE... ...and failed :- (

In SCREAM v2 we stick to the original TAE.

Thanks

Thanks to Wang Lei and Sim Siang for finding out the mistake!

G. Leurent (UCL,Inria) CAESAR candidate SCREAM DIAC 2014 14 / 21

iSCREAM uses an involutive S-Box and L-Box... ... with some unexpected properties :- (

The strong structure of the involutive L-Box, combined with low-weight round constants, allows a self-similarity attack with weak keys or related keys.

We focus on SCREAM at the moment We plan to redesign iSCREAM in the future

Simple tweak: add full constants

Thanks

Thanks to Henry Gilbert, Gregor Leander, Brice Minaud, Sondre Rønjom for finding out!

SCREAM design

TAE Mode LS-Design TBC

Security

Security Analysis Initial Mistakes

Implementation results

Software Hardware

Conclusion

Implementation: High-end CPUs

- \blacktriangleright Use large registers (128-bit) for bitsliced S-box
- \blacktriangleright Use vector permute instructions for L-box

Security
0000

- \triangleright 4-bit to 8-bit table with pshufb in SSSE3, vtbl in NEON
- \blacktriangleright 16-bit to 16-bit table as 8 small tables
- ▶ Constant time (no cache timing side-channel)

Results

 0000000000 *SCREAM design*

- ▶ Fantomas has performances close to AES *(excluding hardware AES)*
- ▶ Tweak gives more security, requires more rounds (20 vs. 12)
- ▶ The TAE mode has a very small overhead
- ▶ Performances similar to AES-GCM (excluding hardware AES)

. . . . *Implementation results Conclusion*

Software performance for long messages (cycles/byte)

More detailed benchmarks soon in eBASH...

Software performance for long messages (cycles/byte)

More detailed benchmarks soon in eBASH...

Software performance for long messages (cycles/byte)

More detailed benchmarks soon in eBASH...

Implementation: AVR micro-controller

- ▶ TBC performance: 7650 cycles
	- ▶ Using 1kB table
	- ▶ Smaller tables if needed
- \blacktriangleright For many embedded devices, side-channel attack are a real threat
- ▶ SCREAM has very good performances for masked implementations
	- ▶ Noekeon also very good (similar components)

- \blacktriangleright We study implementations with a 128-bit datapath
	- ▶ Reasonable price/performance ration
- ▶ Low amount of logic in one round
	- ▶ We can unroll one full step per clock cycle
	- ▶ One step ≈ one AES round
	- ▶ SCREAM TBC ≈ AES

▶ Low overhead for TAE mode

▶ Limited extra memory: small total state

Hardware performance of the TBC: ASIC

- ▶ Hardware:
	- ▶ The tweakable block cipher costs about the same as AES
	- ▶ Low overhead for TAE mode (limited extra memory)
	- ▶ Parallelism can be leveraged in a pipelined implementation
- ▶ Micro-controller:
	- ▶ Good performance (< 8k cycles)
	- ▶ Very good if masking is needed

▶ High-end CPU

- ▶ Parallelism exploited with SIMD
- ▶ Performance similar to AES-GCM

(excluding hardware AES instructions)

▶ High security, high performances

Small tweaks to fix initial mistakes

▶ The tweakable block cipher is also a useful primitive in itself.

FPGA implementation results

Extra Slides

FPGA implementation results

FPGA implementation results

FPGA implementation results

Tweakable Block Cipher:

For **Virtex 6** (XC6 VLX 240T - 3 FF1156):

Notes:

 1 Parameter settings: T = True; F = False; --- = not applicable

² BRAMs operate on 2x higher clock frequency than the rest of the core

³ Key initialization requires extra 1 clock cycle for 128b version or 8 clock cycles for 16b version *G. Leurent (UCL,Inria) CAESAR candidate SCREAM DIAC 2014 23 / 21*

FPGA implementation results

FPGA implementation results

Authenticated Encryption (full mode)

X = (A + P + 1)*10 + 2; Y = (A + P + 1)*20 + 2; A - number of 128b blocks of associated data, P - number of 128b blocks of the plaintext