PRØST

A round-1 CAESAR submission

Elif Bilge Kavun¹ Martin M. Lauridsen² Gregor Leander¹ Christian Rechberger² Peter Schwabe³ Tolga Yalcın⁴

mmeh @ dtu.dk

¹Horst Görtz Institute for IT-Security, Ruhr University Bochum, Germany DTU Compute, Technical University of Denmark, Denmark Digital Security Group, Radboud University Nijmegen, The Netherlands University of Information Science and Technology, Ohrid, Republic of Macedonia

> DIAC 2014 Santa Barbara, August 23, 2014

Motivation $+$ Features

Motivation $+$ Features

As opposed to **mode designs** we wanted to focus on designing a **solid** primitive.

We chose a **permutation** due to its

- \blacktriangleright Simplicity
- \triangleright Not requiring a key schedule

We plug the PRØST permutation into three excellent existing modes

 \triangleright Upshot: Any analysis on those modes applies to our submissions

Features of PRØST which are not in AES (and thus AES-GCM)

- \blacktriangleright Easy bit-sliced implementation
- \triangleright Straightforward constant-time implementation
- \triangleright Cheaper countermeasures due to 4-bit Sbox

Excellent bounds against many attack vectors despite relatively small state

Specification $+$ design rationale

Notation and state representation

- \triangleright We use $\text{Pr}\emptyset$ ST-n for the permutation on 2n bits
- Permutation size is 256 bits ($n = 128$) or 512 bits ($n = 256$)
- **►** State is three-dimensional block of size $4 \times 4 \times d$, so $d \in \{16, 32\}$

(We use Keccak notation for state parts)

The PRØST permutation

 $PROST-n$ iteratively applies round permutations R_i T times, so

 $\text{PRØST-}n = R_{\tau-1} \circ \cdots \circ R_0.$

- For PRØST-128 we have $T = 16$ rounds
- \triangleright For PRØST-256 we have $T = 18$ rounds

Each round R_i , $0 \leq i < T$, is composed of smaller permutations:

 $R_i =$ AddConstants_i \circ ShiftPlanes_i \circ MixSlices \circ SubRows

(Subscript i denotes round-number dependency)

SubRows

MixSlices ShiftPlanesⁱ AddConstantsⁱ

4-bit Sbox is applied to each row of the state. Why 4-bit?

- \blacktriangleright Well understood
- \blacktriangleright Compact implementation

\blacktriangleright Cheap masking countermeasure

SubRows MixSlices ShiftPlanesⁱ AddConstantsⁱ

Each slice (seen over \mathbb{F}_2^{16}) is multiplied by a 16 \times 16 matrix M over \mathbb{F}_2 .

This matrix

- \blacktriangleright Has linear/differential branch number 5 (MDS)
- \blacktriangleright Is involutive
- \blacktriangleright Has low density: Hamming weight 88 (lowest we could find with given conditions w/ hardware assisted search)

SubRows MixSlices ShiftPlanesⁱ AddConstantsⁱ

Rotates each of the 4 planes in the positive z direction (front towards back).

Like AES ShiftRows, but using different offsets every second round, from a rotation matrix $\pi \in \mathbb{Z}_d^{2 \times 4}$.

Rotation constants chosen to

- \blacktriangleright Maximize diffusion
- \blacktriangleright Maximize differential/linear trail weights
- \triangleright Use as many multiples of 8 as possible, otherwise minimize value

SubRows MixSlices ShiftPlanesⁱ AddConstantsⁱ

In each round, a constant is XORed to **each register** of the state to make rounds R_i different.

The constant added to the i th lane in round i is

$$
\begin{cases} c_1 \lll (i+j) & \text{when } j \text{ is even} \\ c_2 \lll (i+j) & \text{when } j \text{ is odd} \end{cases}
$$

Constants c_1 , c_2 are derived from Pi.

Security analysis

Analysis: Differential/Linear trail probabilities Numbers are $log₂$ of upper bound, underlined are non-tight

Keyak: lake, sea and ocean

Analysis: Differential/Linear trail probabilities Numbers are $log₂$ of upper bound, underlined are non-tight

Keyak: lake, sea and ocean

Security analysis: Higher-order attacks

The number of rounds T chosen allow zero-sum distinguishers when Sbox degree is 2

The $P_{RØST}$ Sbox yields algebraic degrees $(2, 2, 3, 3)$, so we believe our choice is conservative

Interesting problem:

 \triangleright Upper bounding algebraic degree when Sbox has mixed degrees

Proposals

The proposals: We propose the use of $P_{\text{RØST}}$ in...

- ▶ Block cipher-based COPA and OTR
	- \triangleright by using the Single-key Even-Mansour construction

- \triangleright Permutation-based APE "as is"
	- \blacktriangleright Using rate/capacity 128/128 for PRØST-128
	- \triangleright Using rate/capacity 256/256 for PRØST-256

Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tischhauser and Kan 畐 Yasuda Parallelizable and Authenticated Online Ciphers In Asiacrypt 2013, pages 424–443.

Kazuhiko Minematsu Parallelizable Rate-1 Authenticated Encryption from Pseudorandom Functions In Eurocrypt 2014, pages 275–292.

Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha and Kan Yasuda APE: Authenticated Permutation-Based Encryption for Lightweight Cryptography In FSE 2014

Fractional data

What we observed:

- ▶ Many elegant designs are crippled by inelegant handling of fractional data to avoid ciphertext expansion
- \triangleright Begging for implementation errors

For simplicity

▶ Always 10^{*}-pad the message

What do we gain?

- \triangleright No special cases for fractional message blocks
- \blacktriangleright Avoids extra code/circuit size in software/hardware
- \triangleright Less prone to implementation errors (quite frequent in practice!)
- \blacktriangleright Implementations are easier to optimize

Security goals

- ► PRØST-COPA/PRØST-OTR:
	- \triangleright Mode proof: Birthday-bound in block size assuming underlying PRP
	- ▶ SK Even-Mansour: Birthday-bound attacks on $\tilde{P}_{n,K}$
	- In Thus, we conservatively claim $2n/4$ bits of security
- \blacktriangleright Prøst-APF \cdot
	- \triangleright c/2 bits security assuming ideal permutation

Performance

Performance

Preliminary figures from vectorized implementations

Intel(R) Core(TM) i5-3210M CPU @ 2.50 GHz

The PRØST permutation

 \blacktriangleright 4.24 cpb with 8-way parallelization

For PRØST-COPA

 \blacktriangleright Roughly 10.6 cpb for long messages

More coming in near future...

Conclusion

Features of PRØST

- \blacktriangleright Easy bit-sliced implementation
- \triangleright Straightforward constant-time implementation
- \triangleright Cheaper countermeasures due to 4-bit Sbox
- \blacktriangleright No fractional data cases
- \triangleright Excellent bounds against many attack vectors despite relatively small state
	- \triangleright Sufficient security margin to reduce # of rounds
- \blacktriangleright Permutation cheap to inverse

Slides will be available at <http://proest.compute.dtu.dk>

Thank you.