Prøst

A round-1 CAESAR submission

Elif Bilge Kavun ¹ <u>Martin M. Lauridsen</u> ² Gregor Leander ¹ Christian Rechberger ² Peter Schwabe ³ Tolga Yalçın ⁴

mmeh @ dtu.dk

¹Horst Görtz Institute for IT-Security, Ruhr University Bochum, Germany ²DTU Compute, Technical University of Denmark, Denmark ³Digital Security Group, Radboud University Nijmegen, The Netherlands ⁴University of Information Science and Technology, Ohrid, Republic of Macedonia

> DIAC 2014 Santa Barbara, August 23, 2014

Motivation + Features

Motivation + Features

As opposed to **mode designs** we wanted to focus on designing a **solid primitive**.

We chose a permutation due to its

- Simplicity
- Not requiring a key schedule

We plug the $\mathrm{Pr} \varnothing \mathrm{sr}$ permutation into three excellent existing modes

Upshot: Any analysis on those modes applies to our submissions

Features of $PR \emptyset ST$ which are not in AES (and thus AES-GCM)

- Easy bit-sliced implementation
- Straightforward constant-time implementation
- Cheaper countermeasures due to 4-bit Sbox

Excellent bounds against many attack vectors despite relatively small state

Specification + design rationale

Notation and state representation

- We use PRØST-n for the permutation on 2n bits
- ▶ Permutation size is **256 bits** (*n* = 128) or **512 bits** (*n* = 256)
- ▶ State is three-dimensional block of size $4 \times 4 \times d$, so $d \in \{16, 32\}$

(We use Keccak notation for state parts)

The $PR \emptyset ST$ permutation

PRØST-n iteratively applies round permutations R_i T times, so

 $\Pr \text{@ST-}n = R_{T-1} \circ \cdots \circ R_0.$

- For PRØST-128 we have T = 16 rounds
- For PRØST-256 we have T = 18 rounds

Each round R_i , $0 \le i < T$, is composed of smaller permutations:

 $R_i = \text{AddConstants}_i \circ \text{ShiftPlanes}_i \circ \text{MixSlices} \circ \text{SubRows}$

(Subscript *i* denotes round-number dependency)

The $\Pr{\varnothing{\rm ST}}$ round permutation

SubRows

MixSlices ShiftPlanes; AddConstants;

4-bit Sbox is applied to each **row** of the state. Why 4-bit?

- Well understood
- Compact implementation

Cheap masking countermeasure

	Involution?	Algebraic degree	Instr. (AVR)	Max DP (#)	$Max\; \epsilon \ (\#)$
Present	no	(3, 3, 3, 2)	20	2^{-2} (24)	2 ⁻² (36)
Prince	no	(3, 3, 3, 3)	32	2^{-2} (15)	2 ⁻² (30)
Prøst	yes	(2, 2, 3, 3)	10	2 ⁻² (24)	2 ⁻² (36)

The $\Pr{\varnothing{\rm ST}}$ round permutation

SubRows MixSlices ShiftPlanes; AddConstants

Each slice (seen over \mathbb{F}_2^{16}) is multiplied by a 16 \times 16 matrix M over \mathbb{F}_2 .

This matrix

- Has linear/differential branch number 5 (MDS)
- Is involutive
- Has low density: Hamming weight 88 (lowest we could find with given conditions w/ hardware assisted search)

The $\Pr{\varnothing{\mathrm{ST}}}$ round permutation

SubRows MixSlices ShiftPlanes; AddConstants

Rotates each of the 4 **planes** in the positive z direction (front towards back).

Like AES ShiftRows, but using different offsets every second round, from a rotation matrix $\pi \in \mathbb{Z}_d^{2 \times 4}$.

Rotation constants chosen to

- Maximize diffusion
- Maximize differential/linear trail weights
- ▶ Use as many multiples of 8 as possible, otherwise minimize value

The $\Pr{\varnothing{\rm ST}}$ round permutation

SubRows MixSlices ShiftPlanes; AddConstants;

In each round, a constant is XORed to **each register** of the state to make rounds R_i different.

The constant added to the *j*th lane in round *i* is

$$\begin{cases} c_1 \lll (i+j) & \text{when } j \text{ is even} \\ c_2 \lll (i+j) & \text{when } j \text{ is odd} \end{cases}$$

Constants c_1, c_2 are derived from Pi.

Security analysis

Analysis: Differential/Linear trail probabilities Numbers are log₂ of upper bound, <u>underlined</u> are non-tight

Keyak: lake, sea and ocean

Analysis: Differential/Linear trail probabilities Numbers are log₂ of upper bound, <u>underlined</u> are non-tight

Keyak: lake, sea and ocean

Security analysis: Higher-order attacks

The number of rounds ${\mathcal T}$ chosen allow zero-sum distinguishers when Sbox degree is 2

The $\Pr{\varnothing{\rm ST}}$ Sbox yields algebraic degrees (2, 2, 3, 3), so we believe our choice is conservative

Interesting problem:

Upper bounding algebraic degree when Sbox has mixed degrees

Proposals

The proposals: We propose the use of $\Pr{\texttt{ØST}}$ in...

- Block cipher-based COPA and OTR
 - by using the Single-key Even-Mansour construction

- Permutation-based APE "as is"
 - ▶ Using rate/capacity 128/128 for PRØST-128
 - Using rate/capacity 256/256 for PRØST-256

Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tischhauser and Kan Yasuda Parallelizable and Authenticated Online Ciphers In Asiacrypt 2013, pages 424–443.

Kazuhiko Minematsu Parallelizable Rate-1 Authenticated Encryption from Pseudorandom Functions In Eurocrypt 2014, pages 275–292.

Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha and Kan Yasuda APE: Authenticated Permutation-Based Encryption for Lightweight Cryptography In FSE 2014

Fractional data

What we observed:

- Many elegant designs are crippled by inelegant handling of fractional data to avoid ciphertext expansion
- Begging for implementation errors

For simplicity

► Always 10*-pad the message

What do we gain?

- No special cases for fractional message blocks
- Avoids extra code/circuit size in software/hardware
- Less prone to implementation errors (quite frequent in practice!)
- Implementations are easier to optimize

Security goals

- ► Prøst-COPA/Prøst-OTR:
 - Mode proof: Birthday-bound in block size assuming underlying PRP
 - SK Even-Mansour: Birthday-bound attacks on P
 [˜]_{n,K}
 - ▶ Thus, we **conservatively** claim 2n/4 bits of security
- ► Prøst-APE:
 - c/2 bits security assuming ideal permutation

Rank	Proposal	PT_{CONF}	PT _{INT}	AD _{INT}
1	Prøst- COPA-128	64	64	64
2	Prøst- COPA-256	128	128	128
3	Prøst- OTR-128	64	64	64
4	Prøst- OTR-256	128	128	128
5	Prøst-APE-256[256, 256]	128	128	128
6	Prøst-APE-128[128, 128]	64	64	64

Performance

Performance

Preliminary figures from vectorized implementations

Intel(R) Core(TM) i5-3210M CPU @ 2.50 GHz

The $\Pr{\texttt{PR}}{\texttt{ØST}}$ permutation

4.24 cpb with 8-way parallelization

For $\Pr{\texttt{BR}\texttt{ØST}}\text{-}\mathsf{COPA}$

Roughly 10.6 cpb for long messages

More coming in near future...

Conclusion

Features of PRØST

- Easy bit-sliced implementation
- Straightforward constant-time implementation
- Cheaper countermeasures due to 4-bit Sbox
- No fractional data cases
- Excellent bounds against many attack vectors despite relatively small state
 - Sufficient security margin to reduce # of rounds
- Permutation cheap to inverse

Slides will be available at http://proest.compute.dtu.dk

Thank you.