AES-Based Authenticated Encryption Modes in Parallel High-Performance Software

Andrey Bogdanov Martin M. Lauridsen Elmar Tischhauser

mmeh @ dtu.dk

DTU Compute, Technical University of Denmark

DIAC 2014 Santa Barbara, August 24, 2014

Context

Context

- \blacktriangleright Huge interest in AE in symmetric community due to CAESAR
- \triangleright Focus on AEAD modes of operation for block ciphers
- Block cipher: AES-128
- \triangleright Intel's latest **Haswell** architecture (2013) improves AEAD-relevant instructions
	- \triangleright AES-NI instructions
	- pclmulqdq: Used for multiplication in $GF(2^n)$
- \triangleright Machine: Intel(R) Core(TM) i5-4300U CPU @ 1900 MHz

Nonce-based vs. nonce-free

In this talk...

Nonce-based modes

 \triangleright Lose authenticity, privacy or both when the nonce requirement is violated

Nonce-free modes

 \triangleright Maintain authenticity and privacy up to the common message prefix

AEAD modes covered

Modes implemented in this work

Also implemented: JAMBU and GCM.

(CAESAR submissions in bold)

Multiple-message setting

Multiple-message setting I

Internet packet sizes essentially follow a bimodal distribution

- \blacktriangleright 44% of packets: 40-100 bytes
- \blacktriangleright 37% of packets: 1400-1500 bytes

Thus, the CAESAR portfolio

- **>** Should have excellent performance for messages up to 2KB
- \blacktriangleright This is the range we benchmark in this work

Wolfgang John and Sven Tafvelin

Analysis of Internet backbone traffic and header anomalies observed In Internet Measurement Conference 2007, pages 111–116.

E.

David Murray and Terry Koziniec

The state of enterprise network traffic in 2012 In 18th Asia-Pacific Conference on Communications 2012

Multiple-message setting II

Meanwhile, this poses a problem

1) Most AEAD modes obtain their best performance only for long messages

Another, mostly unrelated problem

2) Sequential AEAD modes can not fully utilize pipeline for AES encryption on general-purpose CPUs

To remedy these two problems

- \triangleright We consider processing multiple independent message streams in parallel as part of the algorithm itself
- \triangleright Using varying parallelism degrees for all twelve AEAD modes
- \triangleright We are **not suggesting** to implement message scheduling!

Introduced with the performance study of ALE from FSE 2013

Example: AES-CBC in a perfect world I

In a perfect world, all messages have equal length!

 \triangleright Speed-up nearly linear for 2 through 4 multiple messages

Example: AES-CBC in a perfect world II

Does parallel messages imply increased latency?

 \blacktriangleright For perfect parallelization, no increase in latency

Latencies for processing

- \triangleright Single message: 4.28 \cdot $|M|$ cycles
- ▶ 2 parallel messages: $4.30 \cdot |M|$ cycles
- \triangleright 3 parallel messages: 4.29 \cdot $|M|$ cycles
- \triangleright 4 parallel messages: 4.32 \cdot |M| cycles

With 8 parallel messages

- \blacktriangleright Latency increased by 18%
- \blacktriangleright Throughput increased \times 6.8

Example: AES-CBC in a realistic world

Assume we process 4 messages in parallel

- \blacktriangleright 2 messages of 128 bytes
- \blacktriangleright 1 message of 512 bytes
- \blacktriangleright 1 message of 1024 bytes

Actual speedup

cycles in single-message setting

= cycles in multiple-message setting

 $4.28 \cdot (2 \cdot 128 + 512 + 1024)$ cycles

= $1.09 \cdot 4 \cdot 128 + 2.15 \cdot 2 \cdot (512 - 128) + 4.28 \cdot (1024 - 512)$ cycles

 $= 1.74$

 \blacktriangleright Factor 2.27 slowdown from perfect world to realistic world

Performance data

Performance data: Baseline

Theoretical minimum of $\approx 10/16 = 0.625$ cpb obtained for AES-ECB

AES-CBC obtains the same with 8 parallel messages (in a perfect world)

Performance data: Single-message setting

Performance data: Multiple-message setting

Performance data: Speed-ups

Another example: SILC in the multiple-message setting

In a perfect world

Department Speed-up roughly \times 3.60 using 7 multiple messages

In a realistic world

- \triangleright Assume we process 7 messages in parallel
	- \blacktriangleright 4 messages of 128 bytes
	- \blacktriangleright 3 messages of 2048 bytes

Actual speedup =
$$
\frac{\text{cycles in single-message setting}}{\text{cycles in multiple-message setting}}
$$

$$
= \frac{4.57 \cdot 4 \cdot 128 + 4.50 \cdot 3 \cdot 2048 \text{ cycles}}{1.24 \cdot 7 \cdot 128 + 1.76 \cdot 3 \cdot (2048 - 128) \text{ cycles}}
$$

$$
= 2.67
$$

 \blacktriangleright Factor 1.35 slowdown from perfect world to realistic world

Summary

- \triangleright AEAD modes should excel for messages up to 2KB
- \triangleright Obtained first AES-NI and/or Haswell performance figures for many new (CAESAR candidate) AEAD modes
- \triangleright Multiple-message processing allows significant speed-up of especially sequential modes
	- \triangleright Also for messages of varying length

Read the full version of the paper at

<https://eprint.iacr.org/2014/186> (also has nice pictures)

Thanks.