Joltik and Deoxys

Jérémy Jean Ivica Nikolić Thomas Peyrin

Nanyang Technological University, Singapore

DIAC 2014 - August 23, 2014

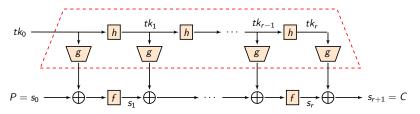
http://wwwl.spms.ntu.edu.sg/~syllab/Joltik
http://wwwl.spms.ntu.edu.sg/~syllab/Deoxys

Introduction •		Security 0	Conclusion o
Introduction			

- Presentation of Joltik and Deoxys candidates.
- ► Together with Kiasu, they are different instances of the new TWEAKEY framework that we propose.
- Joltik and Deoxys share the same structure inside this framework.
- ▶ They use tweakable block ciphers (as Kiasu).
- ▶ Joltik: lightweight and hardware-oriented.
- Deoxys: fast and software-oriented (AES-NI).

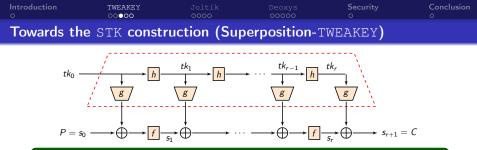
Introduction TWEAKEY Joltik Deoxys Security Conclusion o •0000 Tweakable block ciphers for AEAD

Previous work on TBC:


- Several known methods for TBC, e.g.: LRW, XEX.
- Drawback: birthday-bound security.

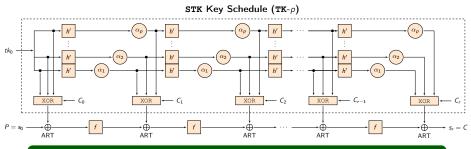
(new) The TWEAKEY framework: to appear at ASIACRYPT 2014

- Unified approach to handle keys and tweaks.
- Standalone primitive to achieve a TBC.
- ▶ Tweak and key processed (almost) the same way.
- Only a framework \implies unsecured instances exist.
- **Security reduction**: regular block cipher with new key schedule.
- Particular subclass: Superposition-TWEAKEY (STK).
 Precise the tweakey schedule.


Introduction TWEAKEY Joltik Deoxys Security Conclusion o The TWEAKEY framework

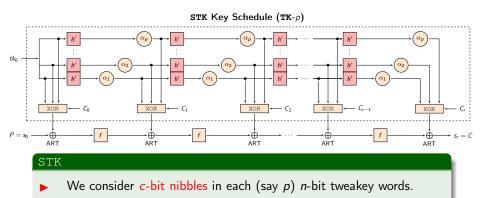
TWEAKEY generalizes the class of key-alternating (KA) cipher.

TWEAKEY

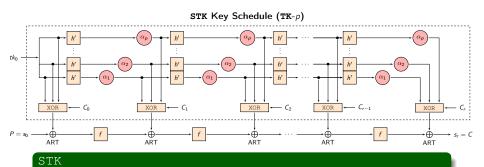

- The regular key schedule is replaced by a TWEAKEY schedule.
- An *n*-bit key *n*-bit tweak TBC have 2*n*-bit tweakey and g compresses 2*n* to *n* bits.
- ► Such a primitive would be a TK-2 primitive (TWEAKEY of order 2).
 - The same primitive can be seen as a 2*n*-bit key cipher with no tweak (or 1.5*n*-bit key 0.5*n*-bit tweak, etc).

Simplifications

- We would like to process the key and tweak inputs independently in the TWEAKEY schedule h and in the same way.
 - The subtweakey addition of $g(tk_i)$ consists in XORing all the *n*-bit words of the tweakey state into the internal state.
- This would:
 - reduce the implementation overhead,
 - reduce the area footprint by reusing code,
 - simplify the security analysis.
 - But: possible interactions between the XOR of *n*-bit tweakey words.


Introduction 0	TWEAKEY ○○ ○ ●○		Security 0	Conclusion O
The STK C	onstruction			

STK


- We consider *c*-bit nibbles in each (say *p*) *n*-bit tweakey words.
- The *h* function is replaced by *n* independent applications of a h' function, which is a nibble-wise substitution.
- To reduce the interaction of the tweakey words at the output of the g function, each nibble of the k-th tweakey word is multiplied by a value $\alpha_k \in GF(2^c)$.

Introduction 0	TWEAKEY ○○ ○ ●○		Security 0	Conclusion O
The STK C	onstruction			

- The *h* function is replaced by *n* independent applications of a h' function, which is a nibble-wise substitution.
 - To reduce the interaction of the tweakey words at the output of the g function, each nibble of the k-th tweakey word is multiplied by a value $\alpha_k \in GF(2^c)$.

Introduction 0	TWEAKEY ○○ ○ ●○		Security 0	Conclusion O
The STK C	onstruction			

- We consider *c*-bit nibbles in each (say p) *n*-bit tweakey words.
- The *h* function is replaced by *n* independent applications of a h' function, which is a nibble-wise substitution.
- To reduce the interaction of the tweakey words at the output of the g function, each nibble of the k-th tweakey word is multiplied by a value $\alpha_k \in GF(2^c)$.

Introduction TWEAKEY Joltik Deoxys Security Conclusion o occoo occoo occoo occoo occoo occoo The STK construction: rationale

Design choices:

- Multiplication in GF(2^c) controls the number of cancellations at the output of g, when the subtweakeys are XORed to the internal state.
- Rely on a linear code to bound the number of cancellations.

Security analysis:

- Simplified security analysis in STK.
- Easy analysis of the tweakey schedule (hard for AES).
- Possibility to reuse previous works and several existing tools searching for high-probability differential characteristics (easy to introduce limitations of the number of cancellations of differences).

Implementation:

- Very simple transformations: linear and lightweight.
- Multiplications constants chosen as 1, 2, 4, ... for efficiency.

Joltik

Lightweight and hardware-oriented candidate to CAESAR.

Introduction 0	Joltik ●000	Security 0	Conclusion o
Joltik			

- Two family of ciphers: $Joltik^{\neq}$ and $Joltik^{=}$.
- ▶ Joltik[≠] assumes nonce-respecting users:
 - Rely on the Θ CB3 framework.
 - Full security.
 - Four recommended parameters (see submission).
- Joltik⁼ allows nonce-repeating users.
 - Rely on the COPA mode.
 - Birthday-bound security.
 - Four recommended parameters (see submission).
- Exactly the same modes as Kiasu (see previous presentation).
- Rely on the Joltik-BC tweakable block cipher.

Introduction 0	Joltik 0●00	Security 0	Conclusion O
Joltik-BC			

Instance of the STK construction.

- Two members: Joltik-BC-128 and Joltik-BC-192.
 - ▶ 128 bits for TK-2: |key| + |tweak| = 128 (2 tweakey words).
 - ▶ 192 bits for TK-3: |key| + |tweak| = 192 (3 tweakey words).
- ▶ AES-based design.
- Involutive MDS matrix in MixColumns \implies low decryption overhead.
- S-Box from the Piccolo block cipher (compact in hardware).
- ▶ Joltik-BC-128 has 24 rounds (TK-2).
- Joltik-BC-192 has 32 rounds (TK-3).
- TWEAKEY schedule:
 - h' is a simple permutation of the 16 nibbles.
 - Multiplications factor are: 1, 2 and 4 in GF(16)/0x13.
 - Constant additions to break symmetries (from LED cipher).

Introduction		Joltik		Security	Conclusion
		0000			
Security cla	aims of Jolt	ik (bits of	security, log	2)	

Nonce-respecting user		
	Joltik≠	Joltik ⁼
Confidentiality for the plaintext	k	n/2
Integrity for the plaintext	п	n/2
Integrity for the associated data	п	<i>n</i> /2

Nonce-repeating user		
	Joltik≠	Joltik ⁼
Confidentiality for the plaintext	none	n/2
Integrity for the plaintext	none	<i>n</i> /2
Integrity for the associated data	none	n/2

Introduction		Joltik		Security	Conclusion
		0000			
Conjecture	d security of	Joltik (bi	ts of securit	:y, log ₂)	

Nonce-respecting user		
	Joltik≠	Joltik ⁼
Confidentiality for the plaintext	k	n
Integrity for the plaintext	п	п
Integrity for the associated data	п	п


Nonce-repeating user		
	Joltik≠	Joltik ⁼
Confidentiality for the plaintext	none	n/2
Integrity for the plaintext	none	<i>n</i> /2
Integrity for the associated data	none	n/2

Software implementations

- vperm implementation (SSSE3 and avx2): about the same (expected) speed as LED.
- Projection for bitslice: about 9 cpb for 4KB messages.
 - Similar numbers for other Joltik[≠] parameters.
 - Joltik⁼ expected to be 2x slower.

Hardware implementations

Deoxys

Fast and software-oriented candidate to CAESAR.

Introduction	TWEAKEY	Joltik	Deoxys	Security	Conclusion
0	00000	0000	●0000	0	O
Deoxys					

- Also two family of ciphers:
 - ▶ Deoxys[≠] for nonce-respecting users,
 - Deoxys⁼ for nonce-repeating users.
- Same modes as Joltik and Kiasu.
- Two sets of recommended parameters for each mode.
- ▶ Rely on the <u>Deoxys-BC</u> tweakable block cipher.

Introduction 0		Deoxys 0●000	Security 0	Conclusion 0
Deoxys-BC				

- Also an instance of the STK construction.
- Two members: Deoxys-BC-256 and Deoxys-BC-384.
 - 256 bits for TK-2: |key| + |tweak| = 256 (2 tweakey words).
 - ▶ 384 bits for TK-3: |key| + |tweak| = 384 (3 tweakey words).
- The round function is **exactly** the AES round function (AES-NI).
- Deoxys-BC-256 has 14 rounds (TK-2).
- Deoxys-BC-384 has 16 rounds (TK-3).
- TWEAKEY schedule:
 - h' is the same permutation as Joltik.
 - Multiplications factor are: 1, 2 and 4 in the AES field.
 - Constant additions to break symmetries (RCON from AES KS).

Introduction	TWEAKEY 00000	Joltik 0000	Deoxys oo⊙oo	Security	Conclusion
Security cla	ims of Deox	vs (bits of	security, log	2)	

Same as Joltik.

Nonce-respecting user		
	Deoxys≠	Deoxys ⁼
Confidentiality for the plaintext	k	n/2
Integrity for the plaintext	п	n/2
Integrity for the associated data	п	n/2

Nonce-repeating user

	Deoxys≠	Deoxys ⁼
Confidentiality for the plaintext	none	n/2
Integrity for the plaintext	none	n/2
Integrity for the associated data	none	n/2

Introduction	TWEAKEY 00000	Joltik 0000	Deoxys 00000	Security	Conclusion
Conjectured			bits of securit	y, log ₂)	

Same as Joltik.

Nonce-respecting user		
	Deoxys≠	Deoxys=
Confidentiality for the plaintext	k	n
Integrity for the plaintext	п	п
Integrity for the associated data	п	п

Nonce-repeating user

	Deoxys≠	Deoxys ⁼
Confidentiality for the plaintext	none	n/2
Integrity for the plaintext	none	n/2
Integrity for the associated data	none	n/2

Introduction			Deoxys	Security	Conclusion			
			00000					
Performances of Deoxys using AES-NI.								

Benchmark of Deoxys	eq with 1	28-bit ke	ey 128-bi	t tweak	(in cpb).
	1KB	2KB	4KB	8KB	64KB
Intel Haswell	2.12	1.74	1.55	1.46	1.38
Intel Sandy Bridge	2.37	1.85	1.59	1.43	1.31

11/1				
1KE	8 2KE	B 4KB	8KB	64KB
Intel Haswell 3.75	3.13	2.84	2.69	2.56
Intel Sandy Bridge 4.74	3.91	3.44	3.11	2.80

Notes:

- Benchmarks done in the $K_{\Delta}N_{\Delta}$ model.
- Fast non AES-NI implementations coming soon.
- Twice more TBC calls in Deoxys⁼ to achieve nonce-misuse resistance.

Introduction 0	TWEAKEY 00000		oltik 200		oxys 000●	Seci o		Conclusion 0
Performance	s of Deo>	kys usi	ng AE	S-NI.				
	titan0	wintermate	hydraß	Miny	hydra7	hydra2	1	
	acgis128	aea128gcmv1	aegis128	aegia128	regis128	tiaoninv1		
	riacoliny1	acs256gcmv1	tiaosinv1	tiaoxinv1	tiaoxiev1	acgia128		
	acgis128	porx6441v1	argis128	argia128	argia128	segis128		
	acgis256	popu6461v1	acgis256	acgis256	acgis256	acgis256		
	klassneg128v1	non/3241v1	divervi	sivervi	sivervi	klassneg128v1		
	morus1280128v1	porx6444v1	kiasunog128v1	klassneg128v1	monus1280128v1	mora#640128v1		
	monual280256v1	monut/40128v1	monual280128v1	morua1280128v1	classineq128v1	siverv1		
	silverv1	borx3261v1	mona640128v1	mona640128v1	mona640128v1	mona1280128v1		
	monu640128v1	aacont%v1	mona1280256v1	morual280256v1	mona1280256v1	mona1280256v1		
	klassing128v1	acon128v1	decoryoneq128128v1	dowyoneq120128v1	decoryoneq128128v1	deroxyaneq128128v1		
	desorymeq128128v1	aca128otrov1	dorsystoq256128v1	dooxymoq256128+1	lossymoq256126+1	klassing128v1		
	dooxyoneq256128v1	aca128otrpv1	klassing128v1	klassing128v1	klassing128v1	domposog256128+1		
	aea128gcmv1	acs256etrov1	aes128cp(bv1	aea128cp/bv1	aes128cpfbv1	aea128cpfbv1		
	aes256gcmv1	acijambovl	acal 28gcmv1	aea128gcmv1	aes128gcmv1	aes128gcmv1		
	de on yse q128128×1	aes256otrpv1	la osysa q128128v1	la osysa q128128v1	aes256gcmv1	aes256gcmv1		
	aes128cp/bv1		acs256gcmv1	aes256gcmv1	fe on yne gill \$12812.8×1	fe on yne gill 2812 Byl		
	dennyneig256128v1	omdiha312k256n256tau256v1	deoxymeq256128v1	demyneq256128v1	deoxyneq256128v1	porx6441v1		
	noradi441v1		nom/6441v1	sora6441v1	som6441v1	aes256cpfbv1		
	aes256cp/bv1	stribub192r1	aes256cpfbv1	aes256cp/by1	aes256cpfbv1	deoxyneq256128v1		
	nora6461v1	omdiha256k128e96cau64v1	porx3241v1	sorx3241v1	porx3241v1	halsivley1		
	halab/ov1	omdiha256k128r96cau96v1	halsiviovi	halaiviovi	som6461v1	son/661v1		
	nors/3241v1	omdiha256k192n104tau128v1	borx6461v1	som6461v1	halaivlovl	sorx3241v1		
	wheeshty1me3/ir1t128	omdba256k128r96cau128v1	wheeshev1me3/init256	wheeshev1me3/irit128	wheeshtv1me3/ir1/256	wheeshev1me3/ir11256		
	whereitty Imr3/ir1(256	omdiha256k256n10Haa160v1	wheeshtv1me3/ir1t128	wheenhtv1mx30r1t256	whereabev1ere3/tr1128	wheeshev1ex3/r1t128		
	halaiwel	omdba256k256e248tau256v1	halaivel	halaiwyl	halsivvi	halsivvl		
	nom/644v1	lakekeyakvl	wheeshev1ma3ia3ia256	wheeshev1me3/ir3t256	wheeshtv1mr3/r3t256	wheeshev1ex3/r3r256		
	wheeshty1me3/ir3t256	stakryskyl	nom6444v1	bora6444v1	sorx3261v1	sorx3261v1		
	ascon96v1	oceankzyakv1	nors3261v1	nonx3261v1	cond-H4v1	acajambuvl		
	som3261v1	ketjesev1	aacoe/96v1	aacon96v1	acajambuv1	sorx6444v1		
	halabele I		halsivhivl	halaishiv1	halabel	aacon96v1		
	pi64clpher256v1	ketjejevl	acijambavl	acajambuvl	scream10v2	wheeshev1ex5/r7t256		
	acajambav1		scream10v2	scream10v2	scream10v1	p(64cipher256v1		
	scream10v2	acal28poetvlacs4	scream10v1	scream10v1	ascon96v1	scream10v2		
	scream10v1	aes128poetv1aes128	wheeshev1me5093256	wheeshev1me50r7t256	scream12v2	scream10v1		
	icepsie256av1	acs128poetv1gf128mal	pi64cipher256v1	p(64cipher256v1	wheeshev1me5ir7t256	p(64cipher128v1		
	icepsie128av1		ascon128v1	aacon128v1	scream12v1	acon128v1		
	cepsie128v1		scream12v2	serram12v2	scream12v2	teepste256av1		
	ascon128v1		scream12v1	scream12v1	scream12v1	cepole128v1		
	scream12v2		ceptie128av1	cepsie128av1	p(64cipher256v1	icepole128av1		
	scream12v1		cepole256av1	cepsie256av1	cepole128av1	scream12v2		
	iscream12v2		cepole128v1	icepsie128v1	cepole128v1	ixtram12v2		
	acream12v1		scream12v2	lscream12v2	cepsle256av1	serram12v1		

Deoxys in the top 10% of AES-NI implementations on SUPERCOP.

Matters ...

Source: http://www1.spms.ntu.edu.sg/~syllab/speed/.

DIAC 2014 - J. Jean, I. Nikolić, T. Peyrin - Joltik and Deoxys

Introduction 0				Security ●	Conclusion o		
Security analysis							

 We have scrutinized the security of the TWEAKEY framework, and devised the STK subclass.

 \Longrightarrow Provide bounds on the number of differences introduces by the tweakey schedule.

- This bound can easily be used in existing differential characteristic search tools.
- We conducted a differential analysis, and selected the number of rounds such that:
 - Joltik-BC has 8 rounds of security margin,
 - Deoxys-BC has 4 rounds of security margin.
 - Also in the submission documents: analysis against MITM strategy.

Introduction	TWEAKEY	Joltik	Deoxys	Security	Conclusion
0	00000	0000	00000	○	•
Conclusion					

- We propose the TWEAKEY framework to design easy-to-analyze tweakable block ciphers (more in an upcoming ASIACRYPT 2014 paper).
- We instantiate this framework to get two TBC:
 - Joltik-BC, which is lightweight and hardware-oriented,
 - Deoxys-BC, which is fast and software-oriented.
- We plug these two ciphers into two different modes to achieve AEAD schemes:
 - ▶ one mode similar to OCB3 for nonce-respecting users,
 - **one mode similar to** COPA to achieve nonce-misuse resistance.

Introduction	TWEAKEY	Joltik	Deoxys	Security	Conclusion
0	00000	0000	00000	○	•
Conclusion					

- We propose the TWEAKEY framework to design easy-to-analyze tweakable block ciphers (more in an upcoming ASIACRYPT 2014 paper).
- We instantiate this framework to get two TBC:
 - Joltik-BC, which is lightweight and hardware-oriented,
 - Deoxys-BC, which is fast and software-oriented.
- We plug these two ciphers into two different modes to achieve AEAD schemes:
 - ▶ one mode similar to OCB3 for nonce-respecting users,
 - **one mode similar to** COPA to achieve nonce-misuse resistance.

Thank you!